
Abstract

With the increased availability of large amounts of texts in recent years (thanks

to popularity of the Internet and modern search engines)1 automatic text summa-

rization has emerged as one of the techniques that can help users make sense of

information overload. Automatic summarization is the process of reducing a large

amount of text to a smaller one while minimizing the information loss. Our work

introduces the novel advanced summarization scenario of “query session guided

multi-document summarization” (QSMDS). We created a dataset of human anno-

tated query session guided summaries (focused on the medical domain) to allow

the evaluation of automatic QSMDS systems. We also adapted state of the art au-

tomatic summarization methods to our scenario to achieve baselines on the task.

1http://www.internetworldstats.com/emarketing.htm
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Chapter 1

Introduction

In this chapter we explain the process that led us to build the “Query-Chain Focus

Summarization Dataset” (QCFS). Since our objective is to combine work in Au-

tomatic Summarization and Information Retrieval, we first give a short overview

of the field of automatic summarization, of the traditional Information Retrieval

field, and specifically focus on the task of Exploratory Search. We then explain

why QCFS is a unique summarization scenario that can greatly aid exploratory

search systems.

1.1 Information Retrieval

1.1.1 Task

The task of information retrieval (IR) is to supply a user with information relevant

to a given query. The query is usually a formal statement that should represent

the information needs [1] of the user. An ideal IR system should be able to un-

derstand the information need behind the query and fetch only relevant data to the

1
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need, e.g., if the user wants to learn about “the effects of red wine on the heart’s

health”, a document about a heart-shaped red wine bottle would match the query

lexically but would not meet the information need. Most IR systems assign to each

document in its dataset a relevancy score1 to a query and present the user with the

highest scored documents.

1.1.2 Methods

Two well-known IR approaches are:

• Vector Space Model [2]- The query and the document are presented as vec-

tors. Each dimension of the vector represents the TF-IDF[3] (this term will

be explained later) of a specific word in the document or query. After en-

coding documents as vectors, algebraic methods such as vector Euclidean

distance (d(V, U) =
√
(v1 − u1)2 + (v2 − u2)2 + ...+ (vn − un)2+) or co-

sine distance (cos θ = U∗V
|U |∗|V | ) are used to determine the similarity of docu-

ments to the query.

• Probabilistic Models [4] - Given the query and document representations,

a system has an uncertain guess of whether a document has content relevant

to the information need. Probability theory provides a principled foundation

for such reasoning under uncertainty.

1.1.3 Evaluation

Many different measures for evaluating the performance of information retrieval

systems have been proposed. The measures require a collection of documents
1The score can be determined by the content of the document and their metadata
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and a query. All common measures described here assume a ground truth notion

of relevancy: every document is known to be either relevant or non-relevant to a

particular query. In practice queries may be ill-posed and there may be different

shades of relevancy.

• Precision - Precision = |{relevantdocuments}∩{retrieveddocuments}|
|{retrieveddocuments}| Precision is

analogous to positive predictive value. Precision takes all retrieved docu-

ments into account.

• Recall - Recall = |{relevantdocuments}∩{retrieveddocuments}|
|{relevantdocuments}| Recall is often

called sensitivity. So it can be looked at as the probability that a relevant

document is retrieved by the query.

• F-measure - F −measure = 2∗precision∗recall
precision+recall

F-measure captures both pre-

cision and recall aspects.

Some of the better known datasets for evaluating IR systems are TREC2 and

MUC3

1.2 Exploratory Search

.

1.2.1 Exploratory Search in a Nutshell

As a part of the “Entailment-Based Exploratory Search and Summarization Sys-

tem For the Medical Domain” [5] project (a joint-project of Bar-Ilan and Ben-

2http://trec.nist.gov/data.html
3http://www-nlpir.nist.gov/
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Figure 1.1: mSpace exploratory search system

Gurion Universities) we tried to confront the task of Exploratory Search [6],

namely obtaining effective information from a corpus without prior knowledge

of its content.

The task of exploratory search evolved from the fields of IR human-computer

interaction (HCI). Exploratory search is different from regular IR tasks due to the

following assumptions about the profile of the user using the system:

• unfamiliar with the domain of his goal

• unsure about the ways to achieve his goals

• or even unsure about his goals in the first place

These assumptions about the user mean that the user cannot formulate a query

using appropriate search terms, because he does not know the terms of the domain

he is exploring. Instead, different exploration methods must be designed. mSpace
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is an early prototype that introduced human-computer interaction techniques that

have since then be widely adopted to help users explore unfamiliar document

collections. mSpace4 is an exploratory search for classical music. Among its

features are:

• Multi-Faceted - The mSpace Browser is a multi faceted column based

client for exploring large data sets in a way that makes sense to you.

• Multi-Media - The mSpace browser takes advance of multi-media when-

ever possible. You could use audio samples to help explore unfamiliar areas

of music, or video clips to aid with movie browsing.

• Multi-Search -As well as column based browsing, mSpace offers a power-

ful Search system. Try a simple keyword search or refine your query with

built in Advanced Search.

A good exploratory search system should support[6]:

• Querying and query refinement:

The user should be able to search the system using a query and each query

should help him learn more about the domain and with the new knowledge

he acquired he could refine his next queries.

• Faceted search:

The facets are used to explore information by assigning multiple attributes

to data. Each facet can narrow the search to display data with the specific

attribute (of the facet). e.g., most on-line retailers use facets such as price

range, product color, product department (books, music, electronic...) etc.
4http://research.mspace.fm/mspace
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Those facets can be dynamically altered for the data displayed (color is not

a relevant attribute facet when buying a book but it is a relevant attribute

facet for buying a shirt).

• Leverage search context:

The exploratory search system should be aware of the user’s past search

results to avoid displaying information the user already read.

1.3 Automatic Summarization

Automatic summarization is a field in natural language processing that involves

reducing a text document (or documents) into a shorter summary using a computer

program. The constantly increasing amount of textual information available to

users on the Internet led to the development of many automatic summarization

systems. Most of them are distinguishable by the following dimensions:

• Informative vs. Indicative summaries:

An informative summary should capture all the information of the summary

and could replace the need for reading the entire document. On the other

end indicative summaries only help the user to decide if he wants to read

the text. Indicative summaries are usually “snippets” of text associated with

search results from information retrieval systems.

• Single vs. Multi-document summaries:

A single document summary capture the information of a single document

while a multi-document summary captures the information from a set of

documents about the topics. When summarizing a document set it is easier
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to find important information since the important information to the topic

should appear in all of the documents while esoteric information should ap-

pear in only few documents. When summarizing a single document with

no previous knowledge it is very hard to distinguish between the important

information and esoteric information. When summarizing a single docu-

ment it is easier to maintain coherence in the summary just by extracting

sentences since all sentences share the same writing style.

• Extractive vs. Generative summaries:

Extractive summaries construct the summary from sentences that appear in

the original text. While generative summary extracts information from the

original text and generates an entirely new text to summaries it.

The summarization task proved to be a difficult one because of the following

reasons:

• Detect Central Topics:

Automatic summarization systems should capture central topics from ar-

ticles. Those topics might be mentioned only few times in the article.

e.g., an article discussing “phone call between Barack Obama and Has-

san Rouhani” should not repeat the fact that the phone call was held more

than once but it is expected to be mentioned in a summary of the article.

• Redundancy:

Salient segments coming from different documents often carry similar infor-

mation, which is repeated in multiple documents. The generator must avoid

including segments conveying the same information into the summary.
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• Coherence:

When segments are extracted from their source document, they may include

references to textual entities within the source. Very little attention has been

paid to this problem in practice.

1.3.1 Advanced Summarization Scenarios

In recent years shared tasks (DUC 2001-2007 and TAC 2008 and later5) presented

advanced summarization scenarios tasks. The following tasks were relevant to our

research:

• Query-Oriented Summarization (QS)[7]:

The QS tasks aims to extract a summary from a set of documents, given a

query. The summary should represent the most relevant6 information to the

query from the documents set. The QS task seeks to improve IR tasks. In

most current search engines, a user usually enters a query and receives a

large amount of search documents that usually match the query. QS is aim-

ing to both return a single document that summarizes this set of documents

and semantic information to the IR process.

• Update Summarization (US)[8]:

The purpose of the US task is to distinguish between novel and redundant

information in two document sets (documents A and documents B). The

documents usually cover the same event but documents A temporally pre-

cede documents B (in the date it was written). The goal is to extract all

5Data Understanding Conference and since 2008 Text Analasys Confrences are annual confrences
of large-scale evaluation of NLP methodologies.

6Relevancy of documents is determined to information need and not to a query
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novel information from documents B into a summary and to avoid redun-

dant information that the user is familiar with after reading documents A.

1.3.2 Summarization Evaluation

Evaluating summarizers is challenging because different people summarize the

same input documents in different ways. Humans also do not readily agree on

ways to evaluate the quality of human-written summaries. Over the years, the re-

search community has converged on pragmatic methods to evaluate summarizers

- both in a manual and automatic manner.

Manual Evaluation

Automatic summarizations can be evaluated manually using qualitative methods.

In typical evaluations, each evaluator is presented with a questionnaire about the

automatic summaries and the answers should help evaluate the summary. This

questionnaire includes questions such as “How informative is the summary?”,

“Is the summary coherent?”,“ How much redundant data does the summary con-

tain?”, ... Another manual evaluation method is the Pyramid method [9]. Each

of the model summaries are manually analyzed into meaning units usually cor-

responding to clauses, called basic elements. Automatic summaries are tested by

checking whether they include the basic elements of the models. Overall linguistic

quality of the summaries is also judged using qualitative questions. Such manual

evaluation turns out to be consistent across human judges across years.
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Automatic Evaluation

One of the main challenges in text summarization is evaluating the automatically

generated summaries. Manual evaluation is expensive, time consuming and in-

consistent between different evaluators. From all those reasons the need to an

automatic summarization evaluation scheme has risen. Nowadays the most popu-

lar automatic summary evaluation tool is ROUGE [10]. ROUGE is a set of metrics

comparing between a set of ideal manually crafted summaries and automatically

generated summaries. ROUGE metrics proved to be consistent with manual eval-

uations [11]. The most commonly used ROUGE metrics are:

• ROUGE-N: N-gram Co-Occurrence Statistics:

The ROUGE-N compares the recall of n-grams between the manually crafted

summaries and the automatically generated ones.

ROUGE −N =

∑
S∈ManualSummaries

∑
gramn∈S Countmatch(gramn)∑

S∈ManualSummaries

∑
gramn∈S Count(gramn)

• ROUGE-S: Skip-Bigram Co-Occurrence Statistics

The skip-bigram is any per of words that appear in their sentence order al-

lowing arbitrary gaps. ROUGE calculates recall precision and F measure.

Rskip2 =
SKIP2(X, Y )

C(m, 2)

Pskip2 =
SKIP2(X, Y )

C(n, 2)

Fskip2 =
(1 + β2)Rskip2Pskip2
Rskip2 + β2Pskip2

where m is the length of X and n is the length of Y , SKIP2(X, Y ) is the

skip-bigram matches between X and Y, β controlling the relative importance

of Rskip2 and Pskip2 (β = 1), C is the combination function
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In order to evaluate our QCS system using ROUGE we needed to create a dataset

of manually crafted query-chain focused summaries. In the next chapter we will

explain how we created such a dataset.

1.4 The “Entailment-Based Exploratory Search and

Summarization System For the Medical Domain”

System

The “Entailment-Based Exploratory Search and Summarization System For the

Medical Domain” is a collaborative effort of both Bar-Ilan and Ben-Gurion uni-

versities to create a exploratory search system for the medical domain. The objec-

tive of the research is combine insights from Entailment-based semantic analysis

of text and automatic summarization to help users explore a document collection.

The overall strategy followed in the project is the following: with the help

of textual entailment tools [12], a concept graph is generated from a large set

of documents in the medical domain. The concept graph describes textual en-

tailment relations between propositions. In this setting, a proposition consists

of a predicate with two arguments that are possibly replaced by variables, such as

(X control asthma). A graph that specifies an entailment relation (X control asthma→

X affect asthma’) can help a user, who is browsing documents dealing with

substances that affect asthma drill-down to only substances that control asthma.

In exploratory search terms, this technology provides an automated way to

extract relevant facets at each stage of an exploratory session.

The user enters a query using free text and then can explore the relevant nodes
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Figure 1.2: Example of the Entailment-Based Health Care Exploratory System

in the concept graph. When the user selects a facet, a subset of the documents

is presented, and a summary is automatically generated for the focused docu-

ments. Since we assume that the users want to explore the dataset, we assume

that several consecutive exploration steps will be taken and for each step, differ-

ent summaries will be presented to the user. We want to avoid redundancy in the

summaries presented to the user in the same exploration session, we want sum-

maries from different exploration steps to present novel information. Our task is

to build such a summarization system to aid the exploration process. This spe-

cific scenario is a new specialized summarization task - it resembles both Query-

Focused summarization (because we want summaries to be relevant to the current

query) and Updated Summarization (because we want successive summaries to be

non-redundant). It is also different from each of these existing tasks: in contrast

to Update Summarization, the set of past/new documents is not explicitly pre-

sented at each step of the exploration, and it must be constructed by the system;

in contrast to Query-focused Summarization, the summary given at stage 2 of the
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exploration must take into account that an answer to q1 was already provided.

In the rest of the work, we present the methodology we used to gather a dataset

capturing such an exploratory behavior and the corresponding summaries pro-

duced by domain-experts. We then present algorithms and methods to model the

desired behavior.



Chapter 2

Research Objectives

We formulate here the research questions addressed in this work:

• Can we use automatic summaries to improve the exploratory search

process?

Most exploratory search systems today include a combination of queries

and facets that help the user discover documents that satisfy his information

need. We want to improve this process by adding automatic summaries of

the documents presented to the user in each step of the exploratory system.

Those summaries should both capture the documents presented to the user

and do not repeat information from previous steps in exploratory search

process.

• Do previous summaries effect the current summary? We wish to re-

search whether summaries presented to a user for the same query at different

steps of the exploratory search process contain different content.

14
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• Can we use existing automatic summarization method for our task?

Both Query-focused Summarization (QS) and Update Summarization (US)

tasks capture important aspects of the summarization task we have defined.

QS should help us capture the query and facet aspects of our task, and US

should help us capture the user learning process, since we want to avoid

displaying data that the user has already learned from previous queries. The

new task we introduce (query chain focused summarization) combines the

tasks of QS and US. It is however different from both. We want to investi-

gate whether a simple combination of the methods used for QS and US is

sufficient to address the need of QCFS, or in contrast whether a new model

is required.

• What dataset can be used to evaluate QCFS algorithms?

DUC and TAC datasets contain both QS and US datasets and TREC con-

tains an US dataset called Temporal Summarization. Since none of the

available datasets capture both aspects of QS and US but only one for each

dataset, we must create a new dataset. We address the method to gather such

a new dataset in the next chapter.

Our main objective is to find an automatic summary method to integrate within

an exploratory search system and to evaluate its performance against human ob-

served performance.



Chapter 3

The Query Chain Dataset

In this chapter, we introduce the query chain dataset that we built in order to eval-

uate exploratory search summaries. We outline the content of the dataset, provide

background information about the participants who contributed to the construc-

tion of the dataset, the technologies we used to build the dataset, and how we

verified that the dataset matched our task.

3.1 Requirements on the Dataset

The dataset should capture summaries generated to aid in an exploratory search

process. In order to gather such a dataset, we need to reproduce an exploratory

search process, in which a user actively seeks to understand a new domain, and

gather manually crafted summaries, produced by domain experts, and that address

the information need of the user at each step of his exploration. We decided to

focus on the consumer-health domain, in which users who are not medical experts

seek to gather information about medical topics. For example, patients or their

16
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relatives often seek to understand more about their condition. We also had access

to the expertise of students in medicine to help us gather a proper set of documents

for specific medical domains and produce appropriate answers to a set of query

chains.

3.2 The Dataset Description

We first aimed to find real-word exploratory search sessions in the medical do-

main. Since no public exploratory search system exists, we decided to inspect

query logs of an existing traditional search engine, and manually extract query

chains that seemed to have exploratory features such as query refinement. We

used the free medical database PubMed1 query logs. PubMed contains a large

collection of scientific articles in the Medical domain. It is usually accessed by

researchers and medical professionals who are seeking specific articles in specific

domains, using well targeted keywords. It is not a consumer-health site, such as

WebMD or BeOK[13].

We found, however, that many non-professional users still access PubMeb to

gather information. We identified such non-professional queries by looking for

queries that include non-professional terms, that are quite general – for example,

short queries such as ”asthma” or ”cancer”. Such short queries almost certainly

identify ”naive users”.

Given these starting points, we then investigated the search log session for

these users, and collected sessions that started from a general query term, rapidly

followed by variations of the original query with some additional refinement terms.

1http://www.ncbi.nlm.nih.gov/pubmed
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A typical example of such a search session is the sequence of queries: asthma→

asthma causes→ asthma allergy→ asthma mold allergy

We found many such examples of query chains in the PubMed query logs,

and focused on query chains around the topics of ’asthma’ and ’lung cancer’. We

specifically collected the following chains from the PubMed query logs:

• Asthma:

– asthma causes→ asthma allergy→ asthma mold allergy

– asthma treatment→ asthma medication→ corticosteroids

– exercise induced asthma→ exercise for asthmatic

– atopic dermatitis→ atopic dermatitis medications→ atopic dermatitis

side effects

– atopic dermatitis → atopic dermatitis children → atopic dermatitis

treatment

• Lung cancer:

– Lung cancer→ Lung cancer causes→ Lung cancer symptoms

– Lung cancer diagnosis→ Lung cancer treatment→ lung cancer treat-

ment side effects

– Stage of lung cancer → Lung cancer staging tests → Lung cancer

TNM staging system

– Types of lung cancer→ Non-small cell lung cancer treatment→ Non-

small cell lung cancer surgery
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– Lung Cancer in Women → Risk factors for Lung Cancer in Women

→ Treatment of Lung Cancer in Women

– Lung Cancer chemotherapy → Goals of Lung Cancer chemotherapy

→ Palliative care for Lung Cancer

After we obtained the queries, we needed to obtain documents for our sim-

ulated exploratory search system. We searched the Internet for documents that

correspond to each query, in sites with high-prestige such as: “Asthma and allergy

Foundation of America,” “Asthma New-Zeland,” “Cleveland Clinic,” “about.com,”

“United States Environmental Protection Agency,” “health.com,” “lifescript.com,”

“NIH Heart,” “Lung and Blood Institute,” “National Library of Medicine - Na-

tional Institutes of Health,” “Palo Alto Medical Foundation,” “Webmd”, “Wikipedia,”

“lungcancersurgery.org,” and more. The guidelines when gathering data for the

document set were to be as comprehensive as possible (to make sure all of our

queries will be covered by the documents) and also insert some redundancy to

the document set (in order to make sure the Update Summary part of the system

will be tested). Overall, we collected 125 documents about “asthma” and 135

documents about “lung cancer”.
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Documents

Count

Sentence

Count

Word

Count

Unique

Words

Documents (asthma) 125 1,924 19,662 2,284

Documents (cancer) 135 1,450 17,842 2,228

Documents (total) 260 3,374 37,504 3,399

Queries (asthma) 15 15 36 14

Queries (cancer) 18 18 71 25

Queries (total) 33 33 107 37

Manual Summaries (asthma) 45 543 6,349 1,011

Manual Summaries (cancer) 54 669 8,287 1,130

Manual Summaries (total) 99 1,212 14,636 1,701

3.2.1 The Annotators

Five people participated in the summarization of the dataset: a linguistics MSc

student, a medical student, a computer science MSc student, medical public health

MSc student and a professional translator with a doctoral degree with experience

in translation and scientific editing. All summarizers had very good English skills.

For each query, annotators manually created a summary, overall 3 summaries

per query. In addition, the annotators selected key sentences for each summary,

in order to enable alternative evaluation methods beyond ROUGE. We asked the

annotators to view each step of the query chains one by one, then to answer the

query by searching the document collection, selecting sentences appropriate to the

query step, then rephrasing the summary on the basis of the selected sentences.

The summarizers were instructed to not include redundant information in the

same query chain.
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Figure 3.1: Our annotation site architecture

The summarizers reported that an average query summarization took about

half an hour.

For each query, we used the three summaries with the highest agreement score,

as measured by the ROUGE scores.

3.2.2 Technology Review

We created a web site2 to help the summarizers write their summaries. The web-

site allowed navigation of both the queries and the document set. The queries were

navigated using a forward and backward buttons and the dataset was indexed us-

ing ”Apache Solr” (an open source enterprise search platform from the Apache

LuceneTM project)3. The summarizers were presented with the query chain and

could use a free-text search to retrieve documents relevant to the query (using

Solr default TF/IDF search). After a summarizer selected a document, he was

presented with the document content split by sentences (this was achieved with

the NLTK package4 sent tokenize). The summarizer could then select each sen-

tence and mark it as relevant to the query and copy it to the summary. The site

2http://www.cs.bgu.ac.il/˜talbau/static/login.html
3http://lucene.apache.org/solr/
4http://nltk.org/
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Figure 3.2: Our annotation site interface

was created using JavaScript5 and HTML56 on the client side and Python Flask7

on the server side.

3.2.3 Verifying the Dataset

To verify our dataset, we needed to make sure that the summaries we created for

advanced queries (q2, q3 in each chain) are different from the summaries created

for the same queries by summarizers who did not see the previous summaries in

the chain. We asked from additional annotators to create manual summaries of

advanced queries from the query chain without ever seeing the queries from the

beginning of the chain. We collected 15 summaries, 3 for each 2nd query from

the asthma query chains.

We first tested the mean ROUGE score of second query summaries. ROUGE

compares a summary with a set of reference summaries. The mean ROUGE score

5http://jquery.com/
6http://getbootstrap.com/2.3.2/
7http://flask.pocoo.org/
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is the mean score of each manual summary vs. all other summaries about the

same query. We got the following results: r1 = 0.52, r2 = 0.22, rs4 = 0.13. The

mean ROUGE scores of the second query summaries by people who did not see

the previous query were (r1 = 0.49, r2 = 0.22, rs4 = .01).

We only verified the asthma dataset in this manner The results, except for the

R2 test, had statistically significant difference with 95% confidence interval, and

indicate that summarizers produced markedly different summaries in the context

of an exploratory search from those produced for the same query out of context.

More information on the dataset could be find at:

www.cs.bgu.ac.il/˜talbau/QSMDS/dataset.html



Chapter 4

Methods

In this chapter we will describe some of the methods we created for the task of

adding summarizations to the BIU exploratory search system. We created two

naive baselines and three adaptations of state-of-the-art automatic summary meth-

ods that adds both query and context features to those methods. The input for

those methods is a document set and query chain and output is a summary for

each query in the chain that best answers that query in context of the chain.

4.1 Naive Baselines

First we tested two very naive baselines for our task. These methods do not ad-

dress the query chain aspect of the problem. We included those baselines in this

work to help the reader get a better perspective on ROUGE scores. The first naive

baseline we tested was the ’First Sentence Method’, In this method we ranked all

the documents in the dataset by their TF/IDF score for the given query, then we

took the first sentence of each document till we reached 250 words. This methods

24
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assumes the first sentence is usually the most important sentence in each docu-

ment (this assumption is more relevant when summarizing news articles). The

second naive method we tested was the ’First Doc Method’ which is extracting

the first 250 words form the documents with the best TF/IDF score for the current

query. This method solves a well known problem in the multi-document sum-

marization field, the coherence problem. Usually when extracting sentences from

different documents they tend to be very incoherent and by taking the entire doc-

ument we achieve coherence in our summary but with the price of not covering

all the information.

4.2 LexRank Based Methods

LexRank [14] is a graph based algorithm for computing the relative importance of

textual units which as been used for text summarization to identify the centrality

of sentences. In this section we will explain how the algorithm works, and how

we modified it for our task.

LexRank creates the following weighted undirected graph from the given doc-

ument set. Each node in the graph represents a sentence from the document set.

For each node, the sentence is encoded as word-vector. For each sentence we save

the TF/IDF (term frequency/inverse document frequency) [3] value in the appro-

priate coordinate of the vector. IDFi = log(N
ni
) N is total number of documents

and ni is the number of documents containing the word i. Each edge weight is

determined by the cosine distance of the vectors we created.

CosineDistance(A,B) =

∑n
i=1Ai ×Bi

2
√∑n

i=1 (Ai)
2 × 2

√∑n
i=1 (Bi)2
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After the graph is created we use PageRank [15][16] to rank the nodes (sen-

tences) by their centrality in the graph we created. PageRank is a link analysis

algorithm, named after Google co-founder Larry Page. It is designed to be used

by the Google web search engine to rank sites by importance. For LexRank’s

case, we use the algorithm to find central sentences. Consider a graph where each

node represents a site and an edge weight is the probability that a user browsing

the site will go from that site to the other site. This probability is estimated by the

number of hyper-links from this site to the other site plus the damping factor. The

damping factor is the probability that a user will click the address bar and navigate

to a new random site. Each node Pi is assigned a Rank PR(pi) by the following

formula.

PR(pi) = (1− d) 1
N

+ d
∑

pj∈Neighbors(pj)

PR(pj)

|Neighbors(pj)|
N is the size of the graph, Neighbors is a function that maps each node to the

nodes connected to it, and d is the damping factor. This definition is recursive.

There are three common methods used to solve this problem an iterative method,

random walk, and an algebraic method.

• Algebraic method - We can write all the edges values in a matrix A (an

n∗n matrix) where the value of cell Aij is the probability to move from site

i to site j (also the value if the edge ij). Given a rank vector ~V exists1 (an

n sized vector where ~Vi is the rank of i). We now observe the multiplication

~V ∗ A we notice that the value of each cell in the output vector is the the

definition of the rank2. Then ~V ∗ A = V and ~V is an eigenvector of A

1proof to the existence of this vector can be found in the referenced PageRank paper
2after including the damping factor in the probability
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with the eigenvalue of 1. In the algebraic method we can simply search an

eigenvector of A with eigenvalue of 1.

• Random walk [17] - We can estimate the rank of each node in the graph

with a process called random walk. We start at a random node on the graph

and then randomly move to another node with the probability given by the

edges. After enough iterations the rank of each node is determined by the

number of times the algorithm reached the node divided by number of iter-

ations.

• Iterative method - The iterative method assigns an initial rank to each

nodes (usually PRt0(i) = 1
N

) and at each step applies the rank formula

PRt+1(pi) = (1− d) 1
N
+ d

∑
pj∈Neighbors(pj)

PRt(pj)

|Neighbors(pj)| till the rank con-

verges or |PRt+1 − PRt| < ε.

We used the iterative method for our experiments.

Now that we have a rank assigned to each sentence, we can select the top

ranked sentences to form our summary. In order to avoid redundancy we select

a threshold and do not add sentences that are too similar to sentences already

selected.
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Data: Document Set D,Threshold T,wordLimit

Result: Sentence Set S

Nodes = {};

TFIDF = calcTFIDF(D);

for sent in D do

Nodes.add(TFIDF.getvector(sent));

end

E = map node pair to score;

for Node1 and Node2 in Nodes do

E{Node1 Node2} = CosineDistence(Node1 Node2);

end

Rank = PageRank(V E);

while True do

newSent = Rank.pop();

for sent in S do

if E(newSent sent) ≤ T then

S.add(newSent);

end

if countWords(S) ≥ wordLimit then

return S;

end

end

end
Algorithm 1: LexRank outline
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4.2.1 Modified LexRank

We modified LexRank to handle query-oriented summarization and to better adapt

it to the medical domain.

Work done by Miao, Yajie and Li, Chunping on “Enhancing Query-oriented

Summarization based on Sentence Wikification”[18] inspired us to add seman-

tic features to the graph (plain LexRank weight is determined only by lexical

features). To achieve semantic weight, we extracted two types of terms from

each sentence Wikipedia terms using Illinois Wikifier [19] and UMLS (Unified

Medical Language System) [20] terms using HealthTermFinder [21]. Once the

terms obtained we used Wiki-Miner [22] to compute the similarity score between

two Wikipedia terms and Ted Pederson’s UMLS::Similarity [23] for the similarity

score between two UMLS terms.

Now that we obtained the terms pairwise score we need to determine the

similarity score between the sentences (each sentence contains many terms). To

achieve this score we used Lexical Semantic Similarity (LSS) [24]

LSS(H,T ) =

∑
HWi∈H(maxTWj∈T (

SSim(HWi,TWj)

SSim(HWi,HWi)
∗ IDF (HWi)))∑

HWi∈H IDF (HWi)

where SSim is the similarity function we used (Wiki-Miner for Wiki-terms UMLS::Similarity

for UMLS-terms) and IDF is Inverse Document Frequency as defined in the pre-

vious section. the weight of each edge will be a combination of similarity scores

E(U, V ) = LSSlexical(U, V ) + A ∗ LSSWiki(U, V ) +B ∗ LSSUMLS(U, V )

e.g., in the figure we can see two sentences with zero lexical similarity but high

semantic similarity3 that can be achieved with our term extraction method.

We normalized the outgoing edges weight so that their sum is one (needed for

3LSS score was not computed for this example since IDF values were required



CHAPTER 4. METHODS 30

Figure 4.1: Term extraction and similarity example

the PageRank to converge).

In order to handle the query we added to the LexRank graph a new node rep-

resenting the query and all the required edges. We change the page rank algorithm

to achieve similarity [25] instead of just finding central sentences [26]. To do that

we instead of the damping factor we added to each node a probability to return to

query, instead of jumping to random node in normal PageRank settings. With this

modification we achieve rank by similarity to the query because now instead of

simulating a random surf we simulate the probability of reaching a sentence when

starting a random walk at the query.

Since LexRank creates an exponential amount of edges we could not simple

apply the algorithm to the entire document set. Instead we applied only on the top

N Solr results for the query. We wanted to use this data for our sentence similarity

measure.

Wiki-terms Similarity

Wikipedia is a collaboratively edited, free Internet encyclopedia it is one of the

world’s most popular general reference sites ever. Its huge amount of semi-

structured data as recently became a popular source for Information Retrieval

tasks. Most Wikipedia pages link to other related Wikipedia pages. This links
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form what is know as the Wikipedia graph.

For our work, we used two state-of-the-art tools to extract the sentence simi-

larity measures. First, we used the Illinois Wikifier [22] to extract the sentences

and then Wiki-Miner [22] for terms similarity.

The Illinois Wikifier tries to solve the Disambiguation to Wikipedia (D2W)

task by formalizing it as an optimization problem with local and global variants.

The local variants assigns scores to Wikipedia term by the relatedness to each

mention in the given text separately. The global variants search for coherence

between the found terms. For example if ’Michael Jordan’ refers to the page of

the computer scientist rather than the basketball player the term ’Monte Carlo’

in the document should be linked with the statistical technique rather than to the

location.

The Wiki-Miner uses the Wikipedia graph to achieve similarity. The weight of

each edge is determined by a TF/IDF score of links to that page and the similarity

scores will be determined by the cosine distance of their hyper-link vectors.

UMLS Similarity

UMLS is a controlled vocabulary created and maintained by the US National Li-

brary of Medicine. The UMLS integrate and distribute key terminology, classi-

fication ,coding standards and associated resources to promote creation of more

effective and interoperable biomedical information systems and services, includ-

ing electronic health records.

To extract the UMLS terms from the free text we used HealthTermFinder,

an automatic medical term annotation program that identifies UMLS terms in

free text. The content of the notes was pre-processed to identify shallow syn-
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tactic structure: part-of-speech tagging with the GENIA tagger [27] and phrase

chunking with the OpenNLP toolkit4. HealthTermFinder recognizes named enti-

ties mentioned and maps them to semantic concepts in the UMLS. It was tested

on a gold standard of 35 clinical notes from the Columbia University Medical

Center. The notes contained 2,589 mentions of clinical entities, corresponding

to 1,056 unique entities, as recognized through gold standard manual annotation.

When compared with state-of-the-art MetaMap [19], HealthTermFinder identified

the mentions with significantly better success: 88.55 (.013 95% CI) F-measure vs.

77.54 (.0165 95% CI) for MetaMap for exact matches of mentions.

For the similarity computation we used UMLS::similarity. UMLS::Similarity

implements a number of semantic similarity and relatedness measures that are

based on the structure and content of the Unied Medical Language System graph.

4.2.2 LexRank-Update

To add a previous queries to the modified LexRank model we incorporated the

following changes to the model. first we did not create a new graph but merged

the graph from the previous query and with the new query and sentences from

the top N documents fetched. the edges were created using the same scoring as

before. this process was done to enable a drill down effect to the summary. since

the summarizer can access both sentences similar to the current query and from

documents that are similar to the previous query.

Another modification to LexRank was done in the sentence selecting process

(taking place after the ranking) we compared the highest ranked sentence to all

sentences selected and sentences from previous summaries to avoid redundancy.
4http://opennlp.apache.org/
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Data: Document Set D,Previous Graph G,Previous summary PS,Query

Q,Threshold T,wordLimit

Result: Sentence Set S

for sent in D + Q do

G.addNode(sent);

for node in G do

G.addEdge(node,sent,weight = LSS(sent,node));

end

end

Rank = SimRank(G,Q);

while True do

newSent = Rank.pop();

for sent in S ∪ PS do

if E(newSent sent) ≤ T then

S.add(newSent);

end

if countWords(S) ≥ wordLimit then

return S;

end

end

end
Algorithm 2: LexRank-Update outline
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Figure 4.2: Graphs generated for LexRank Modified Update

4.3 KLSum Based Methods

The KLSum [28] algorithm was introduced by Haghighi and Vanderwende (2009)

as a multi-document summarization model. The intuition needed to understand

the algorithm is very straight-forward. We want to summarize a set of documents

D by selecting a group of sentences S from our documents set that best describes

the content of the documents set. In order to do that we create PD the unigram

distribution of D and try to find the group of sentences S that its unigram distri-

bution PS is most similar to PD. We use KullbackLeibler [29] divergence (DKL)

to evaluate similarity between the distributions.

DKL(P ||Q) =
∑

i ln(
P (i)
Q(i)

P (i))

KLSum finds the sentence set with minimal KL-Divergence to the original docu-

ment set.

S = min
S:|S|≤wordlimit

DKL(PD||PS)
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The algorithm complexity is NP − hard (can be easily proved by a polynomial

reduction from SUBTSETSUM ). We used a greedy implementation of KL-

Sum. Our implementation iterates over all the sentences in D and each time adds

the the sentence that improves DKL(PD||PS) the most for the current iteration.

Data: Document Set D

Result: Sentence Set S

S = {};

while TRUE do

best improvement = MAX FLOAT;

best sentence = NULL;

for sent in D do

if best improvement ¡ KL(D,S + sent) then

best sentence = sent;

best improvement = KL(D,S + sent);

end

end

S += best sentence;

if num of words(S) ¿ word limit then

return S;

end

end
Algorithm 3: KLSum Greedy Implementation pseudo code
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4.3.1 Our KLSum Implementation

Since the annotators used our annotation site to create their summaries we can

safely assume most of them read documents in the top 10 results fetched by

searching for the query. Thats why for creating the KLSum method we sum-

marized only the top 10 sentences fetched from Solr using the given query. It is

very important to mention that this method just answered single queries. It did not

have any previous answer context.

4.3.2 KLSum-Update

For our second method we wanted to address the main problem of KLSum which

is the lack of context. In order to add such context to the new model, we added the

unigram distribution of previous summaries in the session to the current summary

unigram distribution. When adding the previous unigram distribution we used the

following smoothing:

• We only added words that appear in the current top N documents fetched by

Solr to avoid division by zero when calculating KL-Divergence

• When adding the previous distribution we divided the number of instances

by a smoothing factor (set to. Not using this factor, the previous summaries

weight is too high and only esoteric sentences (in the sense that they contain

words with very low frequency in the document set we want to summarize)

are added to the summary.
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Figure 4.3: KLSum + LDA architecture

Unigram Distribution of Word X

KLSum KLSum Update

CountWordIn(X,CurrentSummary)
NumOfWords(CurrentSummary)

CountWordIn(X,CurrentSummary)+CountWordIn(X,PreviousSummary)
SmoothingFactor

NumOfWords(CurrentSummary)

4.3.3 KLSum with LDA

In this method, we also tried to address the lack of context in KLSum by using a

topic model that tries to distinguish between old content originated from previous

summaries and new content. Our topic model “Query Chain Topic Model” (see

appendix) is based on Latent Dirichlet Allocation [30]. The Query Chain Topic

Model can identify words appearances that contain content that is characteristic

to current query. After we identified those words, we used KLSum to extract a

summary. Instead of the regular unigram distribution we increased the probability

of new content words.

P (X) = CountWordIn(X,CurrentSummary)+ApperancesAsNewContent(X)
NumOfWords(CurrentSummary)



CHAPTER 4. METHODS 38

4.4 Sentence Ordering

The algorithms listed above rank sentences by centrality and select items by top

centrality, and in a way to avoid redundancy. We event determined so far how

selected sentences should be ordered to produce a coherent summary, we used the

following basic editing function for sentence ordering. We sorted the sentences

by a lexicographical order, we first compared the TF/IDF score between the query

and the documents that the sentence were taken from if they were equal, we or-

dered the sentences by their order in the original document.
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Results Analysis

In this chapter, we discuss the evaluation of our methods and the experiment we

designed to assess our model.

5.1 Model Evaluation

5.1.1 UMLS and Wiki Coverage

For our Wiki and UMLS terms coverage test, we did not have a gold standard

tagged dataset. We tried to find tagging errors in our dataset by manually checking

terms with very low scores compared to other terms. Once we found such term

we classified them into two types of errors:

• Wrong sense error: e.g., the term ’Ventolin (e.p)’ (a song by electronic artist

Aphex Twin) was tagged instead of ’Salbutamol’ a quick relief drug used for

bronchospasm in conditions such as asthma and chronic obstructive pul-

monary disease marketed under the name ’Ventolin’. Those errors were

39
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manually fixed by forcing the correct sense.

• Unfixable errors: e.g., terms such as ’States and territories of Australia’

found in the sentence “You also can look for asthma-related laws and reg-

ulations in each state and territory through the Library of Congress (see

Appendix 5).”. Those errors were manually fixed by not tagging any term.

We did not fix missing terms errors. In our document set (containing 37,504

words) we found 3,674 Wiki terms out of them 720 unique terms. We found 5,739

UMLS terms of them 1,245 unique terms.

5.2 Manual Evaluation

The manual evaluation was achieved with the help of two of the manual sum-

maries annotators. We read and compared automatically generated summaries

and tried to understand the differences between the methods. The first thing the

annotators noticed was the low coherence of the summaries. Some summaries,

were reported to be very informative. The second observation on the summaries

was that all methods perform better the more specific the query is. For example for

the first query chain “asthma causes→ asthma allergy→ asthma mold allergy”,

summaries for the first query usually included sentences that just presented the

subject of asthma causes. For example Triggers are things that can cause asthma

symptoms, an episode or attack or make asthma worse. but did not give any infor-

mation that could help the user learn about the query. For more specific queries

such as asthma mold allergy, there was less information on the subject and, there-

fore, most of the information was relevant to the query. The biggest problem with
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summaries that were generated for the advanced queries was redundancy, e.g., in

the summary generated by KLSum for “asthma mold allergy”, we can observe

most of the sentences are very relevant to the query but there are also sentences

that include information from the previous query “asthma allergy” such as the

emphasized sentence.

It is possible to notice that the same query generated with the KLSum+LDA

method does not include redundant information from previous queries in the chain.

We summarized the annotators comments and observations in the following

table.

Method Coverage1 Redundancy2 Comments

LexRank medium some3 a lot of lexical appearance of

the query but not enough con-

tent.

LexRank Update medium some the annotators could not no-

tice the improvement in re-

dundancy.

KLSum good noticeable tendency to prefer longer sen-

tences.

KLSum Update good good summaries were noticeable

less coherent.

KLSum+LDA good good low coherence but better than

the others.
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Mold grows in humid, damp environments, so the best way to prevent and con-
trol indoor mold is to keep your home as dry and ventilated as possible.
Some people with mold allergies may have allergy symptoms the entire sum-
mer because of outdoor molds or year-round if symptoms are due to indoor
molds.
You’re at increased risk of getting these conditions, known as allergic fun-
gal sinusitis and allergic bronchopulmonary aspergillosis, if you’re allergic
to mold.
Asthma triggers are different from person to person and can include:
Airborne allergens, such as pollen, animal dander, mold, cockroaches
and dust mites Allergic reactions to some foods, such as peanuts or shell-
fish Respiratory infections, such as the common cold Physical activity
(exercise-induced asthma) Cold air Air pollutants and irritants, such as
smoke Certain medications, including beta blockers, aspirin, ibuprofen
(Advil, Motrin, others) and naproxen (Aleve) Strong emotions and stress
Sulfites and preservatives added to some types of foods and beverages
Gastroesophageal reflux disease (GERD), a condition in which stomach
acids back up into your throat Menstrual cycle in some women.
Outdoor allergies (also called seasonal allergic rhinitis [SAR], hay fever, or
nasal allergies) occur when allergens that are commonly found outdoors are
inhaled into the nose and the lungs causing allergic reactions.
People may become allergic to only mold or fungi, or they may also have
problems with dust mites, pollens and other spores.
Several measures will help: Stay indoors during periods when the published
mold count is high.

Figure 5.1: KLSum summary for “asthma mold allergy”
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Indoor allergies (perennial allergic rhinitis [PAR] or often called nasal aller-
gies) occur when allergens that are commonly found indoors are inhaled into
the nose and the lungs causing allergic reactions.
Several measures will help: Stay indoors during periods when the published
mold count is high.
Some people with mold allergies may have allergy symptoms the entire sum-
mer because of outdoor molds or year-round if symptoms are due to indoor
molds.
It can trigger asthma attacks and allergic reactions (such as hay fever or
eczema), and it can even cause health problems in people without those con-
ditions.
Mold grows in humid, damp environments, so the best way to prevent and con-
trol indoor mold is to keep your home as dry and ventilated as possible.
Asthma triggers are different from person to person and can include: Air-
borne allergens, such as pollen, animal dander, mold, cockroaches and dust
mites Allergic reactions to some foods, such as peanuts or shellfish Respira-
tory infections, such as the common cold Physical activity (exercise-induced
asthma) Cold air Air pollutants and irritants, such as smoke Certain med-
ications, including beta blockers, aspirin, ibuprofen (Advil, Motrin, others)
and naproxen (Aleve) Strong emotions and stress Sulfites and preservatives
added to some types of foods and beverages Gastroesophageal reflux disease
(GERD), a condition in which stomach acids back up into your throat Men-
strual cycle in some women.
Pollen and Outdoor Mold What to do during your allergy season (when pollen
or mold spore counts are high): Try to keep your windows closed.

Figure 5.2: KLSum+LDA summary for “asthma mold allergy”
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Figure 5.3: ROUGE Scores on the Full Queries Dataset

5.3 Automatic Evaluation

In this section, we present our automatic evaluation methods and results. We used

ROUGE to automatically evaluate our summaries by comparing them to manu-

ally written summaries. We used ROUGE1, ROUGE2, ROUGE3, ROUGE4, and

SU4. Most evaluation work today uses only ROUGE1, ROUGE2, and SU4 but

recent reports show that ROUGE3 correlates best with human evaluation [11].

We tested our summaries vs. the summaries we created for our dataset and vs the

summaries created by annotators who only saw advanced queries.

Observations from the automatic evaluation of full queries:

• KLSum based methods outperform the LexRank based methods: this is

probably related to the poor coverage of relevant sentences reported in the

manual evaluation.
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Figure 5.4: ROUGE Scores on Out-of-Context summaries

• KLSum + LDA is the best performing method but statistically significant to

the second runner in only one test.

• Except for the case of the first document method there is agreement on the

methods rank on all tests.

We also evaluated our methods on summaries created by annotators who only

saw advanced queries in the chain4. Our assumption is that methods that use

context from previous queries will perform worse (since they will ignore general

content that should be included when the query is taken out of context).

Observations from the automatic evaluation of out-of-context queries:

• It is important to emphasize that this dataset is much smaller than the full

dataset (3 queries vs 36 queries in the full dataset). In addition, the annota-

tors for this dataset were all volunteers since we could not use the annotators
4This dataset is much smaller than the regular dataset and contains only three queries
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for the full dataset since they all had seen the previous queries and might

have been biased. We did not include error bars since for such a small

dataset they are meaningless.

• The LexRank based algorithms did not perform as expected and LexRank

Update performed better than unmodified LexRank.

• All KLSum based models that used context features preformed worse or the

same as KLSum. as excepted.
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Conclusions and Future Work

6.1 Conclusions

In this section, we return to our research questions and assess how we confronted

them.

• Can we use existing datasets to evaluate summarization methods for

exploratory search?

Existing summarization datasets lack crucial features needed for our task:

they are either generic, query-focused or update oriented – but none of

them combines query-focused and query-update aspects. We created a new

dataset to evaluate query-chain summarization. This dataset captures query

answering and avoiding redundancy between exploration steps.

• Can we use existing automatic summarization method for our task?

We created 3 novel automatic summarizations methods for the query-chain

task. Those methods are based on existing state-of-the art methods. We
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showed that by adding features related to task we can improve evaluation

scores.

• Do previous summaries affect the current summary?

We compared summaries created by annotators who summarized the en-

tire query session and annotators who summarized only a single advanced

query. We used ROUGE to compare the summaries and found significant

difference in the ROUGE score - indicating that summaries produced at

advanced stages of a chain are significantly affected by the context of the

exploration session.

• Can we use automatic summaries to improve the exploratory search

process?

We did not address this question directly but we believe that our best pre-

forming method (KLSum + LDA) can produce summaries that contain rel-

evant information to the query and avoids redundancy between previous

exploration steps. Those summaries can help the user make an informed de-

cision on whether he wishes to further explore his current query or change

the direction of the exploratory search.

6.2 Future Work

While creating and evaluating our automatically generated summaries, we found

quantitative improvement but we also noticed three qualitative issues on which we

should focus our future work:
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6.2.1 Improving the coverage and redundancy elimination of

our methods

All of our systems used bag of words (BOW) representation of sentences. Recent

work [31] improved automatic summaries by applying anaphora resolution and

replacing the anaphoric expressions with the object they are referring while creat-

ing BOW representation of sentences. For example the sentence ’Sally preferred

the her own company’ will be represented as [′sally′,′ prefer′,′ sally′,′ company′]

instead of [′sally′,′ prefer′,′ her′,′ company′] and by that lexical analysis of the

BOW model. We believe all of our methods could gain from applying this proce-

dure.

6.2.2 Optimizing Runtime Performance

Our topic model requires re-assignment of all topics for each summary. If we

could create a topic model that can capture relevancy and redundancy to an un-

known query chain then we could run the model once and when the query is

given, we could find the correct topic to capture new information. Such a model

will greatly increase our run-time performance since the assignments of topics

currently takes up to 30 minutes while the KLSum part of the method takes only

few seconds for most queries.

6.2.3 Improving coherence

Most of the summaries generated by our top preforming system reported to be

very informative but lacked coherence. Our basic sentence ordering scheme was

not sufficient to achieve coherence. We believe that most our future work should
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focus on improving coherence in summaries. We also believe that coherence can-

not be achieved by extractive summarization even with manual sentence ordering

different writing style between sentences taken from different documents do not

achieve coherent summaries. We should try to explore abstractive summarizations

schemes. With recent advances in the field of semantic parsing [32] and meaning

representation [33] we believe we can capture logical representation of documents

with variations of our methods to capture important information and then use text

generation to achieve coherent summary.
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Appendix A

Query Chain Topic Model

In our work, we combine two LDA based summarization methods to achieve a

query-chain system based on KLSum and topic modeling. The methods we used

are TopicSum [28]1 and DualSum [35]2. We present here the topic model we

created to achieve this summarization method. We explain how by assigning spe-

cific topics to documents that are related to the current query or to the previous

queries, we can assume those topics have a semantic meaning that we can use in

a query-chain system.

Latent Dirichlet Allocation

Latent Dirichlet Allocation is a generative model that is commonly used for topic

modeling. A topic model is a statistical model that maps words from a document

set into a set of “abstract topics.” The LDA model assumes that each document in

the document set is generated as a mixture of topics with assigned probability to

each topic. Once the topics of a document are assigned, words are sampled from
1A multi document summary method that uses LDA
2An update summary method that uses LDA
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each topic to create the document. Given a set of documents, the LDA model tries

to reproduce this latent process in order to uncover the topics that stand behind the

words. Learning the probabilities of the topics is a problem of Bayesian inference.

In the original LDA paper, Variational Bayes approximation is used to calculate

the posterior distribution. Later work [36] used Gibbs sampling [37] to calculate

the posterior distribution.

Gibbs sampling or a Gibbs sampler is a Markov Chain Monte Carlo (MCMC)[38]

algorithm for obtaining a sequence of observations which are approximated from

a specified multivariate probability distribution, when direct sampling is difficult.

This sequence can be used to approximate the joint distribution, to approximate

the marginal distribution of one of the variables, or some subset of the variables

(for example, the unknown parameters or latent variables).

Our Topic Model

We identify a “new content” topic in a document collection by applying the fol-

lowing generative model:

• When given a query chain, we fetched the following documents set: all the

documents that correspond with that previous queries in the chain Dp (top

10 TF/IDF scores for each query), the documents for the current query Dc

(top 10 TF/IDF scores for the query), and all documents D.

• Our model generative story:

1. G is the general words topic, it should capture stop words its distribu-

tion ϕG is drawn for all the documents from Dirichlet(V, λG).
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2. Si is the document specific topic it should represent words which are

local for a specific document φSi is drawn for each document from

Dirichlet(V, λSi).

3. N is the new content topic that should capture words that are character-

istic forDc, φN is drawn for all the documents inDc fromDirichlet(V, λN).

4. O should capture old content from Dp, φO is drawn for all the docu-

ments in Dp from Dirichlet(V, λO).

5. R topic should capture redundant information between Dc and Dp, φR

is drawn for all the documents in Dp

⋃
Dc from Dirichlet(V, λR).

6. For each document fromDc we draw a distributionψt1 over topics(G,N ,R,Si)

from a Dirichlet prior with pseudo-counts3 (10.0,15.0,15.0,1.0)4 for

each word in the document, we draw a topic Z from ψt, and a word

W from the topic indicated by Z .

7. For documents fromDp we draw from the distributionψt2 over topics(G,O,R,Si)

from a Dirichlet prior with pseudo-counts (10.0,15.0,15.0,1.0). The

words were drawn in the same manner as in ψt1 .

8. For documents in D \ (Dc

⋃
Dp) we draw from the distribution ψt3

over topics(G,Si) from a Dirichlet prior with pseudo-counts (10.0,1.0).

The words were also drawn in the same manner.

The Gibbs sampling equation were: θsumm,k =
ndm,k+α

ndsumm+K∗α

φsumk,w
=

nww,k+getPseudoCount(k)
nwsumk+V ∗getPseudoCount(k)

Where θsum is cumulative statistics of theta, ndm,k is the number of words in doc-

3When applying Gibbs sampling we add the pseudo-counts to the actual count
4Values obtained empirically
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Figure A.1: Our topic model plate model

ument m assigned to topic k, nwsumk is the total number of words in document

k, V is the vocabulary size, α is a Dirichlet parameter, nww,k is the number of

instances of word w assigned to topic k.

A.0.4 Evaluation

For evaluation of the topic models, we wrote down a few of the topic assignments

of our topic model for the last query in the first chain “asthma causes→ asthma

allergy→ asthma mold allergy” to get a sense of the model performance.

• General Topic - ’will’,’call’,’doctor’,’test’,’type’,’physic’,’best’,’asthma’

• New Content - ’indoor’,’fungi’,’mold’,’microscop’,’grow’

• Redundant content - ’allerg’,’reaction’,’trigger’,’environmant’,’risk’,’problem’

From the assignment of topics we can notice that the general topic assigned

with stop words not filtered in the tokenizing process such as ’will’ and words
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10S WaysR toX FightG IndoorG MoldN MoldN isX amongX theX mostX
hazardousN householdN substancesG forX peopleG withX allergiesR andX
asthmaG. ItX canX triggerR asthmaG attacksG andX allergicR reactionsS
(suchX asX hayN feverS orX eczemaG), andX itX canX evenX causeX
healthG problemsR inX peopleG withoutX thoseX conditionsG. MoldN
growsR inX humidN , dampG environmentsN , soX theX bestR wayX toX
preventG andX controlG indoorG moldN isX toX keepX yourX homeX
asX dryR andX ventilatedR asX possibleX . WhileX bathroomsS areX anX
obviousS placeG forX moldN toX getX aX toeholdR, thereX areX someX
otherX relativelyX surprisingS sourcesN ofX moldN inX yourX homesuchS
asX firewoodS.

G denotes word was assigned to the general topic.
N denotes word was assigned to the new content topic.
R denotes word was assigned to the redundant topic.
S denotes the word was assigned to the document specific topic.
X denotes the word was dropped in preprocessing5 and was not assigned any
topic.

Figure A.2: Query Chain Topic Model annotation of a document with current
query ’asthma mold allergy’ and previous queries are [’asthma causes’,’asthma
allergy’]

that are general to the asthma document set and general medicine words such as

’doctor’ and ’asthma’ together with common adjectives such as ’best’.

For the new content topic, the assignment is mainly related to ’mold’ and for

the redundant content topic most words are related to ’allergy’ since both the last

query and the 2nd query contained information about allergy.
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