
 

 

 
 

Query Focused Summarization Using Seq2seq Models 
 
 
 
 

Thesis submitted in partial fulfillment 
of the requirements for the degree of  

“DOCTOR OF PHILOSOPHY” 
 
 
 
 

by 
 
 
 

Tal   Baumel 
 
 
 
 

Submitted to the Senate of Ben-Gurion University 
of the Negev 

 
 
 

January 2018 
 

Beer-Sheva 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

Query Focused Summarization Using Seq2seq Models 
 
 

 
 
 

Thesis submitted in partial fulfillment 
of the requirements for the degree of  

“DOCTOR OF PHILOSOPHY” 
 
 
 
 

by 
 
 
 

Tal   Baumel 
 
 
 

Submitted to the Senate of Ben-Gurion University 
of the Negev 

 
 
 
 

Approved by the advisor 
Approved by the Dean of the Kreitman School of Advanced Graduate Studies 

 
 

 
January 2018 

 
 

Beer-Sheva 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

This work was carried out under the supervision of 

 

 

 

 

f Computer Scienceo In the Department 

 

 of Natural ScienceFaculty  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment 
 
 
 
 
 
I_____________________, whose signature appears below, hereby declare that 
(Please mark the appropriate statements): 
 
___ I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. 
 
 
 
___ The scientific materials included in this Thesis are products of my own research, culled from the 
period during which I was a research student. 
 
 
 
 
___ This Thesis incorporates research materials produced in cooperation with others, excluding the 
technical help commonly received during experimental work. Therefore, I am attaching another affidavit 
stating the contributions made by myself and the other participants in this research, which has been 
approved by them and submitted with their approval. 
 
 
 
 
Date:   _________________       Student's name:  ________________        Signature:______________ 
 
 
 

 

 

 

 

 





Abstract

Automatic summarization is one of the many tasks in the interdisciplinary field

of natural language processing (NLP). This task has gained popularity in the past

twenty years with the increased availability of large numbers of texts. Ever since

the introduction of the field by Luhn in the 1950s, automatic summarization meth-

ods have relied on extracting salient sentences from input texts. Such extractive

methods succeed in producing summaries which capture salient information, but

often fail to produce fluent and coherent summaries. Recent advances in neural

methods in NLP have achieved much improved results in most tasks and bench-

marks, including automatic summarization. In this work, we start with a survey

of the field of automatic summarization in general, and focus on the application of

neural network methods to this task. In particular, we critically review the datasets

that have been used to enable supervised methods in automatic summarization.

We cover the variant tasks of summarization – generic vs. query-focused sum-

marization, single document vs. multi-document and extractive vs. abstractive

methods. Neural methods have recently been shown to apply well to single-

document generic abstractive summarization under supervised training. We ex-

tend this initial step towards abstractive techniques by developing and assess-

ing neural techniques for multi-document generic summarization and abstractive
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query-focused summarization.

Our method combines supervised and unsupervised steps, combining new

forms of attention-based sequence to sequence neural models and established

models of relevance assessment developed in extractive summarization. We study

separately techniques for document encoding and relevance assessment.

The main contribution of this work is the development of a new method for

abstractive multi-document query-focused summarization; this method combines

the strength of a supervised headline generator with the agility of an unsupervised

relevance model in a modular manner: we investigate separately each compo-

nent of a neural model for summarization – lexical information encoding with

word embeddings, source text encoding with RNNs, attention mechanism, rel-

evance assessment, and summary decoding with a conditioned RNN. For each

component we provide experimental description of the standard datasets used in

similar research, and verify their adequacy within the context of abstractive, multi-

document query focused summarization.

In the case of Query-Focused summarization, we identify a problematic aspect

of existing datasets (from the DUC family) – namely high topic concentration in

the text clusters – and introduce a new dataset which avoids this problem.

To assess the quality of word embeddings for the task of summarization, we

introduce a new embeddings evaluation method which exploits existing annota-

tions used in human summarization datasets (DUC with Pyramids).

In order to assess the quality of the text encoder, we study an auxiliary task:

multi-label classification. We study a challenging experimental setting in the do-

main of Electronic Health Records, where each document (a patient release letter

written by doctors at the end of an hospitalization episode) is long and annotated
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by many medical diagnostic labels. Within this setting, we establish the effective-

ness of the embed-encode-attend neural architecture for text encoding.

Finally, we present the details of our end to end method for abstractive multi-

document query focused summarization. We demonstrate the effectiveness of the

method against strong existing baselines - both abstractive and extractive.
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Chapter 1

Introduction

Automatic summarization is the task of shortening a text while preserving its most

important information. The task has become extremely useful because of the con-

stant increase of on-line information1 available and the need to process and under-

stand it.

Early work in the field used statistical information from the input text (such as

lexical word occurrences [1] and document structure [2]) to identify salient sen-

tences from a text and to extract them to achieve a salient summarization. Such

extractive summarizers generate text which is not always well organized or read-

able, but they have remained the most effective baseline for over 20 years.

The availability of affordable, fast, and parallel computing power in the form

of Graphical Processing Units (GPUs) and of large-scale training data has enabled

applying neural network-based supervised methods [3, 4] to generate automatic

summaries. These neural models are trained to produce abstractive summarizers.

These recent models remain harder to interpret and modify than their extractive
1http://www.worldwidewebsize.com/

1
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predecessors, since they are learned in an end-to-end manner, in a supervised

manner. It is often difficult to justify or adjust the decisions made when generating

a new specific summary given a source document.

Automatic summarization with neural networks is the main starting point of

this work, with a focus on the transition from extractive to abstractive techniques.

We start in Chapter 2 with a survey of automatic summarization research: the

definition of the task and its variants, the standard datasets used in the field, and

the key techniques that have established the state of the art.

We analyze the task of summarization as the combination of multiple indepen-

dent sub-tasks: content selection, content planning with redundancy elimination,

and summary realization.

We initially focus on the stage of content selection: how does the summa-

rizer decide which content from the source documents deserves to be kept in the

summary, as opposed to content which can be skipped. To better analyze this

question, we contrast between generic summarization (where the central elements

of the source documents must be identified) and query-focused summarization

(QFS) where only information relevant to an input query must be selected. In

Chapter 3, we empirically analyze the standard datasets used in the QFS field, and

identify that they fail to exercise the relevance identification part of the QFS task,

because they exhibit high topic concentration. We design an automated model to

assess topic concentration in a dataset. On the basis of this analysis, we introduce

our first contribution to the field of QFS: a new dataset we have constructed to

refine the notion of query-focused summarization.

We then describe, in Chapter 4, the field of neural network techniques as ap-

plied to automatic summarization which has started in the past two years.
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We discuss evaluation methods for summarization, which are particularly chal-

lenging because there is not a single best summary that can be produced from a

given input document collection. We review how established evaluation meth-

ods ought to be adapted to assess the performance of supervised neural methods

for abstractive summarization, as opposed to the existing extractive methods. In

Chapter 5, we contribute a study of how word embeddings (used in most neural

networks) can gain from the pyramid annotations, available in most summariza-

tion datasets.

In Chapter 6, we move to an analysis of the first module of a neural abstractive

model: the text encoder. To analyze text encoding in a modular manner, we assess

the task of document encoding for an auxiliary task – that of multi-label document

classification. We introduce an interpretable neural network model trained for

electric health care records (EHR) classification. The same model can be used for

automatic summarization in a multi-task setting.

Finally, in Chapter 7, we show how to modify a neural network trained for

generic abstractive single-document summarization to handle the QFS abstractive

multi-document task. We compare different baselines to adapt a single-document

abstractive model to the multi-document setting. We then compare different tech-

niques to introduce relevance in abstractive summarization – combining word-

level and sentence-level relevance cues.

1.1 Contribution

The contribution of this work is both in the field of automatic summarization and

neural methods for NLP. This work synthesizes results presented in the following
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papers:

Topic Concentration in Query-Focused Summarization Dataset [5]: This

work explores an abstract attribute of QFS we call topic concentration. This

attribute measures how much the query aspect of the task should be considered

as opposed to the generic summarization part. This contribution also presents a

new dataset with better topic concentration and relevancy based summarization

methods.

Query Chain Focused Summarization [6]: This contribution introduces the

novel task of query chain focused summarization, a new dataset constructed for

evaluating the task, and summarization methods designed for the task. The dataset

presented in this contribution can be used to assess topic concentration in Query-

Focused Summarization Datasets.

Sentence Embedding Evaluation Using Pyramid Annotation [7]: This con-

tribution suggests using pyramid annotation, a resource to evaluate automatic

summarization, as a benchmark to perform extrinsic evaluation of neural word

embeddings.

Multi-Label Classification on Patient Notes [8]: This contribution evaluated

the ability of different neural encoders (the first building block of most neural ab-

stractive summarization methods) to capture medical diagnoses in a patient note.

We argue that this task is a proxy for the encoder’s ability to capture the key

concepts of a summary, and hence, can play a role within a multi-task learning

architecture combined with abstractive summarization.
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Abstractive Query-Focused Summarization [9]: In this contribution, we present

a method to achieve abstractive QFS using a remotely supervised neural network.

This is the first at applying neural abstractive methods for the QFS task, and

demonstrating that abstractive methods with good relevance models can improve

state-of-the-art.
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Automatic Summarization

6



Chapter 2

Overview

The task of automatic summarization is extremely desirable since overwhelming

amounts of text are generated daily and need to be summarized in order to be

understood. The task is challenging since it requires automatic summarization

systems to understand texts and to identify salient information from source texts,

using it to generate a coherent short text. In this chapter, we survey the field of

automatic summarization and its different facets. Within the map of the field, we

introduce our contribution to the field of QFS dataset evaluation.

2.1 Automatic Summarization

Automatic summarization is a field in natural language processing that involves

reducing a text document (or a set of topically related documents) into a shorter

summary using a computer program. The constantly increasing amount of textual

information available to users on the Internet has led to the development of many

automatic summarization techniques. These techniques can be classified along

7
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the following dimensions:

• Informative vs. Indicative summaries: An informative summary should

capture all the important information of the text and could replace the need

to read the entire document. On the other hand, indicative summaries only

help the user decide whether he wants to read the text. Indicative summaries

are usually snippets of text associated with search results from information

retrieval systems.

• Single vs. Multi-document summaries: A single document summary cap-

tures the information of a single document, while a multi-document sum-

mary captures the information from a set of documents covering a similar

set of topics. When summarizing a document set, it is easier to find im-

portant information, since important information should appear in all of the

documents, while marginal information should appear in only a few docu-

ments. When summarizing a single document with no previous knowledge,

it is harder to distinguish between important information and less central

information. In contrast, when summarizing a single document, it is easier

to maintain coherence in the summary just by extracting sentences, since all

of them share the same writing style, and ordering the extracted content ac-

cording to the order in which they appear in the source document preserves

coherence. Ordering information within a single summary originating from

multiple documents is much more challenging.

• Extractive vs. Abstractive summaries: Extractive summaries construct

the summary from sentences that appear in the original text, in a cut-and-

paste manner. In contrast, an abstractive summary extracts information from
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the original text but generates an entirely new text to summarize it.

• Generic vs. Focused summaries: Generic summaries determine what

is the central information in the source documents without any additional

guidance. Focused summaries use external guidance to determine which

part of the source documents are relevant to the reader, and construct a

summary which focuses on this subset of the conveyed information only.

The guidance to focus the summaries may take multiple forms, such as a

query which characterizes the intended information, or a collection of doc-

uments which represent known information with the intention that only new

information should be included in the summary.

The summarization task is challenging because it requires a system to balance

the following attributes:

• Detecting central topics: Automatic summarization systems should cap-

ture central topics from articles. These topics might be mentioned only

a few times in the source documents. For example, an article discussing

a “phone call between Barack Obama and Hassan Rouhani” should not

repeat the fact that phone calls were made more than once, but we could

expect this detail to be mentioned in a summary of the article.

• Redundancy: Salient segments coming from different documents often

carry similar information, which is repeated in multiple documents. The

summarizer must avoid including segments conveying the same informa-

tion into the summary, but it must be capable of merging information com-

ing from multiple sentences each one contributing a different angle [10].
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For example, “Chinese courts sentenced three of the nation’s most promi-

nent dissidents.” and “By sentencing two of the country’s most prominent

democracy campaigners to long prison terms” could be merge to a sentence

containing both the facts that country where the sentence is held is China

an that the verdict is “long prison terms.”

• Coherence: the task of controlled text generation [11] is extremely chal-

lenging. When segments are extracted from their source document, they

may include references to textual entities within the source which have not

been selected for inclusion in the summary. Similarly, when extracting a

sentence, it may include connectives which relate to other sentences which

are not included in the summary. Such discourse references must also be re-

solved or avoided. For example, the sentence “It qualified earlier this year

leaving the disparate allies without so clear a reason to stay together.” does

not make much sense out of context.

2.2 Query-Focused Summarization

The task of Query-Focused Summarization (QFS) was introduced as a variant

of generic multi-document summarization in shared-tasks since DUC 2005 [12].

QFS goes beyond factoid extraction and consists of producing a brief, well-organized,

fluent answer to a need for information (Dang, 2005), which is directly applicable

in real-world settings.

As a research objective, QFS is a useful variant of generic multi-document

summarization because it helps articulate the difference between content central-

ity within the documents in the cluster and query relevance. This distinction is
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critical when dealing with complex information needs (such as the TREC 2006

Legal Track [13]) because we expect the summary to cover multiple aspects of

the same general topic.

The difference between central and topic-relevant content will only be signifi-

cant when we can observe a clear difference between these two components in the

dataset. Interestingly, it has been observed in [14] that generic summarization al-

gorithms (which simply ignore the query) perform as well as many proposed QFS

algorithms on standard QFS datasets, such as the DUC 2005. We hypothesize that

this is due to the fact that existing QFS datasets have very high topic concentration

in the input (the document cluster). In other words, the datasets used to evaluate

QFS are not geared towards distinguishing central and topic content, a notion that

we explore later in this chapter.

2.3 Summarization Datasets

An important resource for automatic summarization is the various datasets avail-

able. In this chapter, we will cover a number of these datasets, especially large-

scale summarization datasets (used by supervised summarization systems) and

QFS datasets used to evaluate the task.

The de-facto standard datasets for automatic single document summariza-

tion are those produced for the Document Understanding Conferences (DUC)

2001–2007 [15] and the Text Analysis Conferences (TAC) 2008–2016 [16], all

constructed under the auspices of the National Institute of Standards and Tech-

nology (NIST). These datasets cover a variety of summarization variants (single-

document summarization, multi-document summarization, update summarization,
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query-focused summarization, and summarization evaluation). The DUC and

TAC datasets usually contain about 50 document clusters, each containing about

10 articles and 3–4 manually created summaries. This data is used for evalua-

tion and is certainly insufficient (when compared to datasets discussed later) to

train supervised abstractive summarization models. Accordingly, up to the past

two years, most approaches to summarization have been unsupervised learning

techniques.

2.3.1 Large-Scale Summarization Datasets

The large-scale datasets used in recent work to train summarizers were not orig-

inally constructed for summarization. Examples include the Gigaword corpus

[17], the CNN/Daily Mail Corpus [18], and the Wikipedia dataset PWKP[19].

Those existing resources were adapted to simulate summarization contexts.

The Gigaword corpus was produced by the Linguistic Data Consortium (LDC),

and it is an ensemble of various corpora: The North American News text corpora,

DT corpora, the AQUAINT text corpus, and data released for the first time, all in

the news domain. In order to adapt this corpus to the task of summarization, a

subset of the data was extracted including pairs of articles headlines and first sen-

tences, where both share a fixed number of words and the headline is shorter than

the first sentence. There are 3.8M training examples and 400K validation and test

examples. Since the data were obtained automatically, there is no guarantee that

the headline is a good summarization of the first sentence, but it is an affordable

way to achieve large enough training data. The Gigaword corpus is not available

free of charge, which limits its availability.
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Query:
“Describe the activities of Morris Dees and the Southern 
Poverty Law Center .”
Abstract:
“Morris Dees was co-founder of the Southern Poverty Law 
Center -LRB- SPLC -RRB- in 1971 and has served as its Chief 
Trial Counsel and Executive Director .
The SPLC participates in tracking down hate groups and 

publicizing their activities in its Intelligence Report , teaching 
tolerance and bringing lawsuits against discriminatory 
practices and hate groups .
As early as 1973 the SPLC won a federal case which forced 
funeral homes throughout the U.S. to provide equal services to 
blacks and whites .
In 1991 it started a classroom program `` Teaching Tolerance '' 

which features books , videos , posters and a magazine that goes 
to more than 400,000 teachers .
It also funded a civil rights litigation program in Georgia to 

provide free legal assistance to poor people .
The SPLC 's most outstanding successes , however , have been 

in its civil lawsuits against hate groups .
Dees and the SPLC have fought to break the organizations by 

legal action resulting in severe financial penalties .
Described as `` wielding the civil lawsuit like a Buck Knife , 

carving financial assets out of hate group leaders , '' the 
technique has been most impressive : 1987 - $ 7 million against 
the United Klans of America in Mobile , Alabama ; 1989 - $ 1 
million against Klan groups in Forsyth County , Georgia ; 1990 
- $ 9 million against the White Aryan Resistance in Portland , 
Oregon ; and 1998 - $ 20 million against The Christian Knights 
of the Ku Klux Klan in Charleston , South Carolina .
But despite these judgments the Ku Klux Klan and White Aryan 

Resistance have survived .”

Figure 2.1: A query and an abstract taken from DUC 2007.
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The CNN/Daily Mail Corpus was automatically curated by matching arti-

cles to their summary from the CNN and Daily Mail websites. The dataset in-

cludes 90k documents from CNN and 196k documents from the Daily Mail. The

CNN/Daily Mail dataset is available on-line.1 Each abstract in the dataset contains

up to 100 words, while the source documents are up to 800 words.

The PWKP dataset contains Wikipedia edit history; a subset of the edits can

be considered as sentence simplification. The dataset was automatically aligned

to find original sentences and simplified pairs. Again, this is not a proper sum-

marization dataset, but it includes pairs of long sentences/short sentences, which

is useful in learning how to shorten and paraphrase sentences in an abstractive

manner.

These datasets are good sources of knowledge to learn how to rephrase infor-

mation in a compact manner. But they are weak proxies of the real summarization

task because they do not cover the challenges of content selection across multiple

documents, relevance assessment, and redundancy avoidance, which have been

the key characteristics of the traditional DUC/TAC summarization datasets in the

past. In addition, in all of the supervised datasets, there is a single summary for

a given source document, while for DUC/TAC datasets, there are usually four or

more human summaries for each source document cluster.

This is an important point, as it highlights that what is addressed in the group

of abstractive summarization methods we survey later is a task different in nature

from what was studied a decade ago. Still, the same evaluation metrics (mainly

ROUGE) are applied uniformly across the two variant tasks – which induces un-

expected bias.
1\RRR{https://github.com/danqi/rc-cnn-dailymail}
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2.3.2 Query-Focused Summarization Datasets

In multiple DUC datasets (2005, 2006, 2007) [12, 20], the QFS task asks for an

answer to a query as a summary of at most 250 words created from a cluster of

25–50 documents (newspaper articles). As part of the dataset preparation, asses-

sors were instructed to populate the cluster with at least 25 documents that were

relevant to the query. The instructions, thus, encouraged the creation of topically

coherent document sets as input to the summarization task. Notably, the extent

to which the document clusters are focused on the query is not directly observ-

able: assessors could select between 50% to 100% of the documents as “relevant

to the topic.” Our empirical evaluation (presented below) indicate that, in fact, the

selected documents are almost fully relevant to the topic, hence making the rele-

vance finding aspect of the task practically not effective to succeed on this dataset

for the QFS task.

2.4 Summarization Evaluation

One of the challenges of the automatic summarization task is evaluation. The eval-

uation score should be well-defined even when done manually (i.e., if the score

relies on the evaluator’s judgment it will not be consistent across other evalua-

tors). In this section, we discuss popular methods of automatic summarization

evaluation methods.
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2.4.1 Manual Evaluation Methods

DUC Evaluation Procedure

The DUC evaluation procedure consists of the following steps:

1. A human annotator produces a reference summary according to the summa-

rization task guidelines. This summary is called a model.

2. The model summary is split into clauses. This step is performed automati-

cally using the SPADE tool.2

3. Given an automatically generated summarization (called a peer), it is also

split into clauses using the SPADE tool.

4. A human evaluator manually compares the clauses from the model and peer

summary and determines the coverage percentage of clauses from the peer

summary.

One of the main problems with the DUC evaluation procedure is its reliance

on a single gold-summarization. Not only may different annotators not agree with

each other regarding what clauses should be included in the ideal summary, in a

study performed by Lin and Hovy in 2002 [21], only 83% of human evaluators

agreed with their own prior judgment.

The Pyramid Method

The Pyramid method was designed to solve the single gold-summarization re-

liance problem of the DUC evaluation procedure. In order to use the method, a

Pyramid file must first be created manually (Fig. 2.2):
2https://www.isi.edu/licensed-sw/spade/
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Model Summaries SCUs are weighted by 
the number of summaries 
they appear in

Create pyramid

W=3

W=2

W=1

Figure 2.2: Pyramid method file illustration.

1. A set of model summaries is created.

2. Each summary is divided into Summary Content Units (SCUs). SCUs are

key facts extracted from the manual summarizations and are no longer than

a single clause.

3. A Pyramid file is created where each SCU is given a score by the num-

ber of summaries in which it is mentioned (i.e., SCUs mentioned in three

summaries will obtain a score of 3).

After the Pyramid is created, it can be used to evaluate a peer summary:

1. All the SCUs in the summary are manually located.

2. The score of all the found SCUs is summed and divided by the maximum

score that the same number of SCUs can achieve.

SCUs are extracted from different source summaries, written by different au-

thors. When counting the number of occurrences of an SCU, annotators effec-

tively create clusters of text snippets that are judged semantically equivalent in

the context of the source summaries. They actually refer to clusters of text frag-
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ments from the summaries and a label written by the pyramid annotator describing

the meaning of the SCU.

Analysis done on the DUC 2003 dataset [22] shows that score consistency

across annotators does not improve when using more than four summaries.

2.4.2 Automatic Evaluation Methods

Manual evaluation is expensive, time consuming, and inconsistent between dif-

ferent evaluators. For all these reasons, the need for an automatic summarization

evaluation scheme has arisen.

BLEU Metric

The BLEU (bilingual evaluation understudy) metric [23] originally proposed to

evaluate machine translation in a study from 2003 [24] shows high agreement

to human annotators when using the BLEU metric for evaluating automatically

generated summaries.

BLEU is a precision-based method which is explained in the following exam-

ple from Papineni et al.:

Automatic Translation (AT): the, the, the, the, the, the, the

Reference Translation 1 (RT1): the, cat, is, on, the, mat

Reference Translation 2 (RT2): there, is, a, cat, on, the, mat

Since every word (the) in AT appears in both reference translations, AT will

receive a precision score of match
length = 7

7 = 1. The BLEU metric modifies the preci-

sion score by clipping the number of times a word can be counted as a match by

the maximum appearances of the word in a single reference translation matchmax.
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In the example matchmax for the word the is 2 since it appears two times in RT2

and only once in RT1. The BLEU score of AT is matchmax
length = 2

7 .

In the example, we see a unigram variation of the BLEU score, but any n-gram

configuration can be used. Longer n-grams are used to measure text fluency, and

shorter n-grams measure its coverage.

BLEU remains an extremely popular method of evaluating automatic transla-

tions and summaries to this day. The method relies on few gold reference texts so

it is inexpensive and can be applied automatically; thus, it is very fast. BLEU is

designed to approximate human judgment at corpus level, and performs poorly if

used to evaluate the quality of individual sentences.

ROUGE Metric

The most common method to evaluate automatic summaries is ROUGE (Recall-

Oriented Understudy for Gisting Evaluation) [25]. Like BLEU, ROUGE relies on

lexical comparison of automatically generated n-grams to manually created gold

standard models. Unlike BLEU, ROUGE scores rely on measuring recall instead

of precision. ROUGE relies on recall because automatic summaries are bounded

by a strict maximal word limit i.e., a perfect precision score can be achieved by

generating a summary containing only the word ”the”.

The ROUGE metric includes a suite of different score functions:

• ROUGE-N (n-gram): The ROUGE-N function measures the recall of n-

grams between the model summaries and the peer summaries. Pearson cor-

relation to manual evaluation ranges from 0.76 (ROUGE-9) to 0.87 (ROUGE-

2).
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ROUGEN =

P
S2ModelSummaries

P
nGram2S CountMatch(nGram)P

S2ModelSummaries

P
nGram2S Count(nGram)

(2.1)

• ROUGE-L (Longest Common Subsequence):

Recalllcs =
LCS(peer,model)

length(model)
(2.2)

Precisionlcs =
LCS(peer,model)

length(peer)
(2.3)

Flcs =
LCS(1 + �

2)RecalllcsPrecisionlcs

Recalllcs + �2Precisionlcs
(2.4)

Where LCS should return the length of the longest common sub-sequence,

and � is the ratio of recall importance to precision (set to the high value of

8 for the DUC evaluations).

• ROUGE-W (Weighted Longest Common Subsequence): A modified ver-

sion of ROUGE-L that favors consecutive common subsequences. 0.86

Pearson correlation to manual evaluation.

• ROUGE-S (Skip-Bigram Co-Occurrence Statistics): ROUGE-S counts

the number of overlapping skip-bigrams between the model and peer sum-

maries. Skip-bigrams refer to common subsequences of length 2. 0.87

Pearson correlation to manual evaluation.

• ROUGE-SU (Extension of ROUGE-S): In order to credit summaries with

zero skip-bigram overlap. ROUGE-SU adds a unigram aspect to the ROUGE-

S. The unigram aspect is achieved by simply adding a start-of-sentence
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token at the beginning of each sentence of the input summaries before

ROUGE-S is applied. 0.87 Pearson correlation to manual evaluation.

METEOR

The last automatic evaluation method we cover is METEOR [26]. METEOR was

designed for machine translation but can be used for evaluating automatic sum-

maries as well. The METEOR method computes a score by first achieving word-

to-word alignment between the evaluated text and the reference text. There are

two ways to achieve this alignment: (a) based on the Porter stem algorithm [27]

(based on pre-defined regular expressions), or (b) based on WordNet [28] syn-

onyms. Once the alignment is achieved, Precision, Recall, and F-measure scores

can be calculated, where aligned words are considered a match. While METEOR

achieves the highest correlation to human judgment of all the automatic methods

presented, the requirement of manually curated resources for stemming makes it

hard to implement for languages other than English and limits its applicability

to the vocabulary covered by WordNet (excluding proper nouns and named en-

tity variants which are extremely frequent in the News domain most often used in

Summarization datasets).

2.5 Summary

In this chapter we covered various types of automatic summarization (i.e. ex-

tractive vs. abstractive), automatic summarization tasks (i.e., generic and query

focused), evaluation methods (i.e., manual such as pyramid and semi-automatic

such as ROUGE), and datasets (i.e., DUC, CNN/Daily-Mail etc). This thesis will
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focus on a current trend to shift from extractive methods to abstractive methods.

It is important to note that most topics covered in this chapter are currently biased

towards generic extractive summarization methods:

1. Most semi-automatic evaluation methods were tested for correlation to man-

ual evaluation only for extractive methods, i.e., an adversarial abstractive

method that scrambles the words of a reference summary will yield a per-

fect ROUGE-1 score while being completely unreadable.

2. Some QFS datasets fail to measure essential aspects of the task such as

relevance (we cover this issue in the next chapter)

3. All currently available datasets large enough to enable supervised learning

are used for the generic summarization task. It is important to note that, they

are all created using proxy tasks and may require cleaning before being used

for summarization.

In the second part of the thesis we review abstractive summarization methods,

and in the third part we present three contributions that share the theme of adapting

summarization resources to other tasks.
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Topic Concentration in Query

Focused Summarization Datasets

One example of the automatic summarization field bias toward generic summa-

rization is the fact that the same methodology for constructing generic summariza-

tion datasets is used when constructing QFS datasets. In this chapter we explore

problems caused by this bias.

The QFS task consists of summarizing a document cluster in response to a

specific input query. QFS algorithms must combine query relevance assessment,

central content identification, and redundancy avoidance. Frustratingly, state of

the art algorithms designed for QFS do not significantly improve upon generic

summarization methods, which ignore query relevance, when evaluated on tradi-

tional QFS datasets. We hypothesize this lack of success stems from the nature

of the dataset. We define a task-based method to quantify topic concentration in

datasets, i.e., the ratio of sentences within the dataset that are relevant to the query,

and observe that the DUC 2005, 2006 and 2007 datasets suffer from very high

23
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topic concentration. We introduce TD-QFS, a new QFS dataset with controlled

levels of topic concentration. We compare competitive baseline algorithms on

TD-QFS and report strong improvement in ROUGE performance for algorithms

that properly model query relevance as opposed to generic summarizers. We fur-

ther present three new and simple QFS algorithms, RelSum, ThresholdSum, and

TFIDF-KLSum that outperform state of the art QFS algorithms on the TD-QFS

dataset by a large margin.

3.1 Topic Concentration

Topic concentration is an abstract property of the dataset and there is no explicit

way to quantify it. A direct method of quantifying this property was introduced

before [14] and tested on DUC 2005. The method measures similarity between

sentences in the documents cluster and an Oracle expansion of the query. As

many as 86% of the sentences in the overall document set were found similar to

the query. We find, however, that this direct method has problems that we will

discuss later. We introduce an alternative way to assess topic concentration in

a dataset, which compares the behavior of summarization algorithms on varying

subsets of the document cluster. On the DUC 2005, DUC 2006 and DUC 2007

datasets, our method indicates that these datasets have high topic concentration,

which makes it difficult to distinguish content centrality and query relevance.

We aim to define a new QFS dataset that suffers less prone to topic concentra-

tion. In the new dataset we constructed, we explicitly combine documents cover-

ing multiple topics in each document cluster. We call this new dataset Topically

Diverse QFS (TD-QFS). By construction, TD-QFS is expected to be less topi-
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Figure 3.1: ROUGE—Comparing QFS methods to generic summarization meth-
ods: Biased-LexRank is not significantly better than generic algorithms.

cally concentrated than DUC datasets. We confirm that, as expected, our method

to measure topic concentration finds TD-QFS less concentrated than earlier DUC

datasets and that generic summarization algorithms do not manage to capture

query relevance when tested on TD-QFS. We observe that a strong QFS algo-

rithm such as Biased-LexRank [29] performs significantly better on TD-QFS than

generic summarization baselines whereas it showed relatively little benefit when

tested on DUC 2005 (see Fig. 3.1).

To refine our assessment of topic concentration, we analyze a 2-stage model

of QFS: (i) first filter the document set to retain only content relevant to the query

using various models; (ii) then apply a generic summarization algorithm on the

relevant subset. This model allows us to investigate the impact of various rele-

vance models on QFS performance (see Fig. 3.2).

In the rest of the chapter, we introduce ways to measure topic concentration

in QFS datasets based on this model, and show that existing DUC datasets suffer

from very high topic concentration. We then introduce TD-QFS, a dataset con-

structed to exhibit lower topic concentration. We finally compare the behavior of

strong baselines on TD-QFS and introduce three new algorithms that outperform
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Figure 3.2: Two-stage query-focused summarization scheme.

QFS state of the art by a very large margin on the TD-QFS dataset.

3.2 Measuring Topic concentration in Document Clus-

ters

Our objective is to assess the level of “topic concentration” in a QFS document

dataset, so that we can determine the extent to which performance of QFS algo-

rithms depends on topic concentration. For example, the DUC 2005 instructions

to topic creators when preparing the dataset were to construct clusters of 50 doc-

uments for each topic, with 25 documents marked as relevant, so that, we would

expect that about 50% of the documents be directly related to the topic expressed

by the query.

Gupta et al. (2007) proposed to measure topic concentration in a direct man-

ner: a sentence is considered relevant to the query if it contains at least one word

from the query. They also measured similarity based on an Oracle query expan-

sion: The Oracle takes the manual summaries as proxies of the relevance model,

and assesses that a sentence is “similar to the query” if it shares a content word

with one of the manual summaries. With this direct similarity measure, 57% of
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the sentences in DUC 2005 are found similar to the query; with Oracle similarity,

as many as 86% of the sentences are found similar to the query. This is much

higher than the expected 50% that was aimed for at construction time.

We have found that this direct measure of similarity predicts levels of topic

concentration that are not good predictors of the margin between generic and fo-

cused summarization performance. We propose instead a task-based measure of

topic concentration with finer granularity. We first describe the method and the

new dataset we have constructed, and then show that the direct measure incor-

rectly predicts high concentration on a topically diverse dataset, while our new

topic concentration measure distinguishes between the two datasets.

We model QFS as a 2-stage process as illustrated in Figure 3.2: (1) rank pas-

sages in the cluster by similarity to the query; (2) filter the document cluster and

apply a generic summarization algorithm on the most relevant passages. We can

now use various content retrieval methods to assess whether a passage is relevant

to the query, and keep the same generic summarization method to organize the set

of sentences found relevant into a set of non-redundant central sentences.

In our experiments, we use the KLSum method [1] as the generic summariza-

tion method. KLSum selects a set of sentences from the source documents such

that the distribution of words in the selected sentences is as similar as possible to

the overall distribution of words in the entire document cluster. To measure sim-

ilarity across word distributions, KLSum uses the KL-Divergence [30] measure

between the unigram word distributions. KLSum provides a well-motivated way

to remove redundancy and select central sentences and obtains near state of the

art results for generic summarization. Since we rank passages by similarity to the

query, we can control the degree to which the input document cluster is filtered.



CHAPTER 3. TOPIC CONCENTRATION 28

We compare three content retrieval methods in our experiments:

• The traditional TF-IDF method [31].

• Lavrenko and Croft’s Relevance Model [32].

• Oracle gold retrieval model: passages (defined as non-overlapping windows

of 5 sentences extracted from each document) are represented as unigram

vectors; they are then ranked by comparing the KL-Divergence of the pas-

sage vector (interpreted as a word distribution) with the vocabulary distri-

bution in the manual summaries.1

For each retrieval model, we keep only the top-N sentences before applying

the generic method so that we obtain variants with the top most-relevant passages

containing up to 750, 1,000 ... 2,250 words. As a baseline, we also apply KLSum

on the whole document set, with no query relevance filtering (thus as a generic

summarization method). We report for each configuration the standard ROUGE-2

and ROUGE-SU4 recall metric. Note that these metrics take into account “re-

sponsiveness to the query”2 because they compare the summary generated by the

algorithm to human created summaries aimed at answering the query.

In our setting, the retrieval component makes the summary responsive to the

query, and the generic summarization component makes the summary non-redundant

and focused around the central aspect of the content relevant to the query.

Our hypothesis in this setting is that: if a QFS dataset is not fully saturated

by the input topic, the results of the same generic summarization algorithm will
1Because the summaries have been written by humans as an answer to the query, they capture
relevance.

2The ability to provide query specific information.
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improve when the quality of the retrieval component increases. In other words,

the ROUGE score of the algorithm will increase when the retrieval improves. In

contrast, when the dataset is fully saturated by content that is exclusively relevant

to the query, the quality of the retrieval component, and even the level of filtering

applied in the retrieval component will not significantly affect the score of the

QFS algorithm.3
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Figure 3.3: Comparing retrieval components on DUC 2005.

The results when applied to the DUC-2005 dataset are shown in Figure 3.3:

remarkably, the ROUGE metrics are not significantly different regardless of the

level of filtering. The graphs remain flat generic summarization performs as well

on 750 words as on 2,250 words of input (out of about 12,000 total words in each

cluster and output summarization length is 250 words).

This experiment shows that the specific DUC 2005 dataset does not exercise

the content retrieval component of QFS. The dataset behaves as if all sentences
3In other words, we identify the quality of the relevance model with the quality of the summary
derived from it in an extrinsic manner.
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were relevant, and the QFS algorithms must focus their energy on selecting the

most central sentences among these relevant sentences. This task-based evaluation

indicates that DUC-2005 suffers from excessive topic concentration. We observe

exactly the same pattern on DUC 2006 and DUC 2007.

3.3 The TD-QFS Dataset

We introduce and make available a new dataset that we call the Topically Di-

verse QFS (TD-QFS) dataset to try to create a QFS benchmark with less topic

concentration. The TD-QFS re-uses queries and document-sets from the Query

Chain Focused Summarization (QCFS) [6] but adds new manual summaries that

are suitable for the traditional QFS task.

QCFS defined a variant summarization task combining aspects of update and

query-focused summarization. In QCFS, a chain of related queries is submitted

on the same document cluster (up to three queries in a chain). A new summary is

produced for each query in the chain, that takes into account the current query qi

and the previous summaries produced to answer the previous queries in the same

chain.

DUC 2005-7

Document Set

Query

Summaries

Document Set

Query

Summaries

…

QCFS

Document Set

Query1

Summa
ries

Query2

Summa
ries
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Summa
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Figure 3.4: DUC 2005-7 vs. QCFS dataset structure.

Multiple queries are associated to each document cluster (as seen in Fig. 3.4).
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All the queries were extracted from PubMed4 query logs. These query formula-

tions are much shorter than the topic descriptions used in DUC datasets, but the

context provided by the chain helps elucidate the information need. To construct

the document clusters, medical experts were asked to collect documents from reli-

able consumer health web-sites relating to the general topic covered by the query

chains (Wikipedia, WebMD, and the NHS).

In this chapter, we compare the TD-QFS dataset with traditional QFS datasets.

We expect that TD-QFS, by construction will be less topic-concentrated than tra-

ditional QFS datasets because each document cluster is collected to answer mul-

tiple queries.

When constructing the TD-QFS dataset, we first observe that producing a sum-

mary for the first query of each chain in QCFS is identical to a QFS task, since

there is no prior context involved. To compare different queries on the same docu-

ment cluster, we asked multiple annotators to generate manual summaries for the

second query in each query chain out of context (that is, without reading the first

query in the chain). The statistics of the expanded dataset, TD-QFS5 appear in

Table 3.1.

We first verify that, as hypothesized, the TD-QFS dataset has lower topic con-

centration than DUC 2005. The document clusters have been constructed so that

they contain answers to multiple queries (about 15 short queries for each of the

four topics). To confirm this, we measure the KL-Divergence of the unigram dis-

tribution of the manual summaries obtained for each query with that of the overall

document cluster. While in DUC 2005, this KL-Divergence was 2.3; in the QCFS
4https://www.ncbi.nlm.nih.gov/pubmed/
5TD-QFS is available at http://www.cs.bgu.ac.il/˜talbau/TD-QFS/dataset.
html
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Document clusters # Docs # Sentences # Tokens/ Unique

Asthma 125 1,924 19,662 / 2,284
Lung-Cancer 135 1,450 17,842 / 2,228
Obesity 289 1,615 21,561 / 2,907
Alzheimers Disease 191 1,163 1 4,813 / 2,508

Queries # Queries # Tokens/ Unique

Asthma 9 21 / 14
Lung-Cancer 11 47 / 23
Obesity 12 36 / 24
Alzheimers Disease 8 19 / 18

Manual Summaries # Docs # Tokens/ Unique

Asthma 27 3,415 / 643
Lung-Cancer 33 3,905 / 660
Obesity 36 3,912 / 899
Alzheimers Disease 24 2,866 / 680

Table 3.1: TD-QFS dataset statistics.

dataset, we obtain 6.7 indicating that the manual summaries in TD-QFS exhibit

higher diversity.

We then reproduce the task-based experiment described above on the TD-QFS

dataset and compare it to the DUC dataset. The results are now markedly different:

Figure 5 reports the ROUGE-recall metrics when performing TF*IDF ranking of

the documents, selecting the top N passages (750, 1,000 ... 2,250 words) and

then applying the generic summarization KLSum method to eliminate redundancy

and meet the summary length constraint. As expected, we find that filtering out

irrelevant content produces better results: instead of the flat curves observed on

DUC datasets, the quality of the retrieval clearly influences ROUGE results on the

TD-QFS dataset, with curves decreasing sharply as less relevant content is added.

We next compare different retrieval models: Figure 3.1 shows the respec-
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Figure 3.5: ROUGE-Recall results of KLSum on relevance-filtered subsets of the
TD-QFS dataset compared to DUC datasets.

tive ROUGE results when applying KLSum as a generic summarization method,

Biased-LexRank as a state of the art QFS algorithm and the Gold Retrieval model

where the most relevant passages are passed to KLSum up to a number of words

limit and relevance is measured as KL-Divergence to the manual summaries. The

Gold Retrieval model performance indicates the theoretical higher bound we can

achieve by improving the retrieval model.

The results demonstrate the critical importance of the relevance model on

ROUGE performance for QFS when the dataset contains sufficient variability:

ROUGE-SU4 scores vary from 0.155 to 0.351 while the whole range of scores

observed on DUC 2005 was limited to [0.119–0.136].

Note that, in contrast to what our task-based evaluation demonstrates, the di-

rect method described above to measure topic-concentration using the binary rel-

evance model of Gupta et al. would have predicted that TD-QFS is also highly
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Original query Oracle query expansion

Min 1.4% 67.8%
Average 28.5% 83.7%
Max 57.0% 92.0%

Table 3.2: Topic Concentration as predicted by the Direct Method on the TD-QFS
Dataset.

concentrated (see Table 3.2). This could be explained by the fact that Gupta’s Ora-

cle Expansion test measures lexical overlap between the manual summary and the

document cluster; key terms found in the document cluster are bound to appear in

both manual summaries and most sentences from the cluster. For example, it is

unlikely that all of these sentences match a given query just because both of them

contain the term “asthma.”

3.4 Relevance-based QFS Models

We introduce three new QFS algorithms that account for query relevance in differ-

ent ways. Those methods attempt to eliminate the need of determining a specific

threshold size that was used in the experiments above. We compare the meth-

ods to the three baselines presented above: KLSum as generic summarization,

Biased-LexRank, and Gold Retrieval as a theoretical upper bound.

In the RelSum method, instead of using N-gram distribution to represent the

document set we construct a hierarchical model that increases the probability of

words taken from relevant documents. In pure KLSum, the probability of each

word in the document cluster is modeled as:P (w) =
P

d2c freq(w, d) . In con-

trast, RelSum introduces the document relevance in the formula as: P (w) =
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P
d2c rel(d)⇥freq(w, d) where rel(d)6 is the normalized relevance score of doc-

ument d.
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Figure 3.7: Comparison of retrieval-based algorithms performance on the TD-
QFS dataset.

Finally, we assess the threshold in the list of ranked candidate documents for

summarization by learning the average number of documents actually used in the

manual summaries. This is a weakly supervised method which learns the cutoff

parameter from the manual document dataset. We find that five documents are

used as sources for manual summaries on average. We define the TFIDF-KLSum

method as the method that consists of ranking all documents by similarity to the

query and passing the top five documents to the KLSum generic summarizer.
6For this chapter we tested TF*IDF relevance as rel()
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We observe (Figure 3.7) that the TFIDF-KLSum method outperforms RelSum

and KLThreshold and closes the gap between Biased-LexRank and the theoretical

upper bound represented by the Gold Retrieval method. All three methods based

on the methods show impressive ROUGE improvements compared to QFS state

of the art.

3.5 Conclusion

We have investigated the topic concentration level of the DUC datasets for query-

focused summarization. We found that the very high topic concentration of those

datasets removes the challenge of identifying relevant material from the QFS task.

We have introduced the new TD-QFS dataset for the QFS task, and have showed

that it has much lower topic concentration through a task-based analysis. The

low topic concentration setting allows us to articulate the difference between pas-

sage retrieval (a typical Information Retrieval task) and QFS. We discovered that

given perfect IR, the gold retrieval model, a standard sum summarization algo-

rithm achieves an order of magnitude improvement in rouge score.

We introduce three algorithms that combine an explicit relevance model to se-

lect documents based on the input query, and then apply a generic summarization

algorithm on the relevant documents. While these three algorithms significantly

outperform state of the art QFS methods on the TD-QFS dataset, the gap with

the theoretical upper bound identified by the Gold Retrieval method remains high

(from ROUGE 0.25 to 0.34). We make the TD-QFS dataset available to the com-

munity. We intend to continue analyzing IR models that can help us further bridge

that gap. We also attempt to develop joint models that combine relevance, cen-
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trality and redundancy avoidance in a single model.
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Chapter 4

Neural Networks

4.1 Introduction

Neural network models achieve state-of-the-art results in various tasks that were

considered impossible less than a decade ago. Notable examples of such cases

can be seen in the field of computer-vision, in which automatic object recognition

is currently on par with human ability [33, 34], as well as in NLP, where voice-to-

text systems [35], and machine-translation models [36] also achieve state-of-the-

art results using neural network models.

These models have been proven capable of learning complex tasks involving

rich types of inputs and outputs, and for the first time, the hope of achieving truly

abstractive automatic summarization systems appears reachable. In this chapter,

we review key concepts in neural-networks for NLP, specifically, word embed-

dings and sequence-to-sequence architectures. We explore the challenges of de-

veloping abstractive summarization models, namely acquiring large scale training

data needed for summarization and various problems with predicting output of

40
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very high dimensions (computing a vector of the entire vocabulary size). Finally,

we survey state-of-the-art techniques addressing the task of abstractive automatic

summarization.

4.2 Neural-Network Concepts for NLP

The concept of artificial neural networks has been first introduced back in 1954

[37] and since then has been applied and specialized to a wide range of domains.

The success neural networks achieved in the last decade is due to improvements

in hardware with the introduction of GPUs, the wide availability of training data,

advanced training methods, and better optimization methods. In this section, we

review components and architectures specialized for NLP tasks.

We assume the reader is familiar with generic neural-networks techniques,

including perceptrons [38], various non-linear activation functions (sigmoid, hy-

perbolic tangent, rectified linear unit, soft-max), back propagation [39], and opti-

mization methods (SGD, ADAM, etc). We refer to Goldberg’s survey [40] for a

concise and up to date presentation of applications of neural networks to NLP.

4.2.1 Word-Embeddings

The first concept we explore is the earliest stage of the neural-automatic-summarization

pipeline, that is, word-embeddings. Word-embeddings refer to a set of methods

for representing words as dense high-dimension vectors. An example of word rep-

resentation commonly used is written English, words are represented as sequences

of characters. Sometimes similar sequences of letters have similar meanings (e.g.,

“dog” vs. “dogs”). In other cases, however, slight difference in the sequence mean
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a great difference in meaning (e.g., “cat” vs. “cut”). Another way of represent-

ing words (less common in day-to-day uses but very common for computational

use) is one-hot-encoding: each word is represented by a vector and all the values

of the vector are zeros except one value which is set to one. Each dimension of

this sparse vector represents a different word. When using one-hot-encoding, all

words are represented as orthogonal vectors hence they are equally dissimilar to

each other (“dog”, “dogs”, “cat”, “cut” are all different in the same way as far as

one-hot-encoding predicts).

Word-embeddings aim to bridge the gap between representing words as se-

quences of characters and sparse high-dimensional vectors by representing words

as dense vectors. These dense vectors are selected so that they model semantic

similarity, i.e., semantically similar words should be represented as similar vec-

tors while words with no semantic similarity should have different vectors under

a vector metric. Typically, vectors are compared using a metric such as cosine

similarity, euclidean distance, or the earth movers distance [41].

Notable methods to acquire such dense vector representations are word2vec

[42] and GloVe [43]. Both methods are based on the concept of distributional se-

mantics, which exploits the assumption that similar words tend to occur in similar

surroundings. For example, the words “cat” and “dog” should appear close to the

word “cute” more than the word “brick” since they are both pets and pets are often

referred to as “cute” (we approximate the notion of surroundings with the word

immediate context). Both methods try to find a representation where words with

similar environments have similar dense representations.
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Figure 4.1: Word2Vec CBOW model illustration.

word2vec

Word2vec is based on two methods: continuous-bag-of-words (CBOW) and skip-

gram. In both methods, the algorithm searches for representation of the words and

their context. CBOW searches for representations where the context predicts the

word, while skip-gram predicts the context in which the word appears. Word2vec

uses unannotated texts to train (usually from the domain of a task). It extracts the

contexts of the words from the text and uses a method called negative sampling

to reduce convergence time. Negative sampling randomly generates word-context

pairs that didn’t appear in the text and uses them as false examples. The algorithm

thus maximizes the distance between negative samples and the model predictions

and minimizes the distance from predictions to sampled examples.

Empirical evaluation of word2vec representation discovered that the model

not only learns word similarity, it can also be used to compute word analogies.
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For example the model can predict that the word ‘France’ is to the word ‘Paris’

as the word ‘Spain’ is to the word ‘Madrid’. Analogies are achieved using vector

arithmetics. The word vector closest to V ector(‘Paris
0) � V ector(‘France

0) +

V ector(‘Spain0) was found to be the representation of ‘Madrid’. The model was

tested [42] on a word analogy task and achieved 50.4% accuracy.

In various language-based tasks such as classification with low amount of

training data, word2vec can be pre-trained on a larger corpus related to the task

[44].

A document can be represented as the sum of its word embeddings and be fed

into a classifier such as a Support Vector Machine (SVM) or a Multi-Layer Percep-

tron (MLP). Such representations of documents are called “bag of embeddings.”

[45] Alternatively, a document can be encoded by feeding an ordered sequence

of the word embeddings representations into a recurrent neural network (RNN).

This document representation has been the basis of a wide range of successful

applications called sequence-to-sequence models.

GloVe

The Global Vector model (GloVe) is aimed to achieve faster training time and

more scalable model than word2vec. Like word2vec the idea behind GloVe is

to construct a word representation with the idea that similar words have similar

context.

First the GloVe model constructs a co-occurrence matrix P of dimensions

|V ocab| ⇥ |V ocab| where the Pij entry in the matrix represents the number of

times the word i appeared near word j in a given corpus. After P is constructed,

we optimize the following objective function 1
2

PW
i,j=0 f(Pi,j)(uT

i vj � log(Pi,j))2
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Figure 4.2: RNN interface illustration.

where f is a weighting function that is designed to avoid rare co-occurring words

from being overweighted, u is the word representation matrix and v is the context-

word representation matrix. The GloVe model training time is only dependent on

vocabulary size unlike word2vec that is dependent on the corpus size.

4.2.2 Sequence-to-Sequence Architectures

Recurrent Neural Networks (RNNs) are useful for modeling and solving tasks

where the length of the input texts vary; they allow us to avoid learning different

features for each position while considering word contexts (order). RNN refers

to a family of architectures (Simple RNNs, GRUs [46], LSTMs [47]) that all im-

plement similar interfaces: an input, input state, output state, and output. All are

represented as dense vectors: input and output are the same size, and input state

and output state are the same size. The state vector captures task-relevant context

information needed to process the next word - it encodes the “memory” of the

network as it traverses the sequence of words left to right.

RNNs proved successful for tagging tasks such as part of speech (POS) tag-

ging [48] since their state vector can model relevant context information for each

word automatically. While previous models used Markovian assumption where
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Figure 4.3: RNN network for POS tagging illustration.

only the previous n-words are relevant to the current tag, RNNs enable us to cap-

ture contexts of unknown length since we can chain any number of RNN cells.

To capture global context information instead of just context information from

the left of the current word, we can use a bidirectional RNN (BiRNN) [49].

BiRNNs use two RNN layers, one layer scans the input from left-to-right and the

other scans the input from right-to-left. The output vector of the BiRNN for each

word is the concatenation of the two RNNs output vectors for the corresponding

word.

RNNs and BiRNNs can handle tasks where the input has variable length and

the size of the output is constant or is the same as the input. In the task of sum-

marization, the desired output is shorter than the input. In the next paragraphs,

we discuss architectures that can handle variable length outputs and inputs, those

architectures are globally known as sequence-to-sequence (seq2seq) [50].
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Encoder-Decoder

The first seq2seq architecture we discuss is the encoder-decoder [51] model,

where the encoder first encodes the input sequence to a fixed-length vector and

then the decoder decodes the vector into an ordered list of outputs, in our case it

will be the sequence of the summary words. It is common to use the last output

vector of an RNN as the encoded vector that will be used as input for the decoder.

The decoder is also an RNN.

The decoder is an RNN where the input of each node is the encoded vector

concatenated with the embedding of the last output. The decoder should continue

generating outputs until it generates an end-of-sequence token or reaches a pre-

determined maximal length. There are many ways to “wire” an encoder-decoder

model but the model always uses a fixed size representation of the input sequence

obtained by an RNN/BiRNN and a 2nd RNN that uses this representation to gen-

erate the output sequence.

Encoder-decoder models have achieved impressive results in machine transla-

tion tasks [51] but proven less effective when translating longer sentences. The

reason for the lower performance is that regardless of the input length, the model

will always encode it into a vector with the same length. Intuitively, the longer a

sentence is, the more information it may contain, thus a longer vector is needed to

represent it. This effect is called the transduction bottleneck.

Attention Mechanism

One of the models created in order to solve the problem of trying to decode various

length input sequences to fixed-length vector in encoder-decoder models is the
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Figure 4.4: Encoder-Decoder model for input and output of size n.

attention mechanism [36]. The attention mechanism enables the decoder RNN

to select which parts of the input are important at each decoding step. This is

achieved by computing a normalized importance score for the encoder outputs

and then encoding the input as a weighted sum of all the encoder outputs. The

decoder uses a different encoded vector for each decoding step.

More formally the attention mechanism can be described by the following

equations:

ai,t = tanh(ei ·W1 + st�1 ·W2) · v (4.1)

ât = softmax(a1,t, a2,t, ..., an,t) (4.2)

encodedt =
nX

i=0

ât,i · ei (4.3)

where ei is the output of the encoder representing the i
th input item, st�1 is

the decoder state of decoding step t � 1, W1 and W2 are learnable matrices, v is
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learnable vector, ai,t is the importance score of input word i at decoding step t, ât

is the normalized importance vector at decoding step t, encodedt is the attended

decoder for the t
th decoding step.

The attention mechanism has been successfully applied to various text gen-

eration tasks such as image captioning [52], machine translation, and abstractive

summarization [3].

We provide Python code implementing all the seq2seq models described above1

using two popular neural network libraries (PyTorch and Dynet) to make the mod-

els as precise as possible.

In general, the combination of the seq2seq architecture with an attention mech-

anism has been demonstrated to work as a very general learnable transducer model,

which can be trained in an end-to-end manner (where all components are trained

simultaneously) when sufficient amounts of training pairs (input sequence, out-

put sequence) are available. When applied to the task of summarization, specific

aspects of the linguistic task make the application of this general architecture chal-

lenging.

4.3 Challenges of Neural-Networks for Automatic

Summarization

We now discuss the challenges of applying seq2seq models for automatic ab-

stractive summarization. These include: how to obtain training data (covered

previously under large scale summarization dataset); how to deal with very large

vocabulary and a large number of proper nouns which is typical of many news-
1https://talbaumel.github.io/attention/
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oriented summarization datasets; how to deal with the large discrepancy in length

between the source and target sequences; how to improve training and generation

computation time which can be very slow when generating texts with a long input

and very large vocabulary.

4.3.1 Predicting High-Dimension Output

When using encoder-decoder based models, the network is required to predict the

next word at each decoding step. In the Gigaword corpus, there are 69K unique

words. To predict a word using the decoder output, it is common to apply the

softmax method: formally the probability of outputting a word given the decoder

output (context) is defined as:

P (w|c) = exp(cTV 0
w)P

w02V exp(cTV 0
w0)

(4.4)

Where V 0 is a learnable weight matrix with a column assigned to each vocabu-

lary word (|C|⇥ |V |). When predicting extremely large vocabulary such as in the

Gigaword case, this computation is time consuming (time complexity of O(|V |))

and requires maintaining many parameters (space complexity of O(|V |)).

Sampled Softmax

One of the methods to speed-up the softmax function while training is to use a

variation called sampled softmax [53]. The sampled softmax method speeds up

computation by approximating the denominator of the softmax function: instead

of computing a sum of |V | vector multiplications, only a subset of the vocabu-

lary is sampled. Empirical results show low effect on accuracy while achieving a
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constant speedup. A comprehensive list of different sampling methods to improve

softmax computation is reviewed in Ruder’s 2016 review.2

Hierarchal Softmax

Another method to speedup the computation of softmax is the hierarchal softmax

[54]. The method splits the assignment of probability to each word from the

vocabulary to selecting a route in a predetermined tree where the leaves are the

words from the vocabulary.

Given a vocabulary arranged in a tree as seen in Fig. 4.1, the hierarchal soft-

max requires creating a softmax layer for each node of the tree. The probability

of a tree node will be the multiplication of the probabilities in the path from the

root to the leaf.

We provide Python code implementing hierarchal softmax3 as a detailed ref-

erence.

For example the probability of selecting the token ‘A’ is equal to the probabil-
2http://sebastianruder.com/word-embeddings-softmax/index.html#
samplingbasedapproaches

3https://talbaumel.github.io/softmax/
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ity of selecting the path from B1 to B2 times the probability of selecting the path

from node B2 to ‘A’.

P (w =0
A

0|c) = PB1(w =0
B

0
2|c) ⇤ PB2(w =0

A
0|c) (4.5)

PB1(w =0
B

0
2|c) =

exp(cTV 0
B2
)P

w02{B2,B3} exp(c
TV 0

w0)
(4.6)

4.4 Survey of Abstractive Summarization Systems

In this section, we survey four seminal attempts at creating a neural network

based abstractive summarization system. These models implement full end to

end single-document generic abstractive summarizers using neural architectures.

They all introduce incremental improvements that can be analyzed separately. The

systems are:

• A Neural Attention Model for Sentence Summarization [3]: this is the first

system which attacked the task of abstractive summarization with the model

of seq2seq and attention. It demonstrated the feasibility of the approach on

large-scale data and showed solid improvement over existing phrase statis-

tics based techniques.

• Abstractive Text Summarization using Sequence-to-sequence RNNs and

Beyond [55]: this paper improved upon Rush et al’s by introducing an ex-

plicit mechanism to deal with large vocabulary and unknown words.

• Get To The Point: Summarization with Pointer-Generator Networks [4]

• Sentence Simplification with Deep Reinforcement Learning [56].
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4.4.1 A Neural Attention Model for Sentence Summarization

In this work [3] the summarization task is described as a conditional language

model, where the model should generate to most likely abstractive summarization

given a document. This work explores three different methods of encoding a

document, where the encoding is then used to condition the language model of

the decoder. For all the encoders described, the same LSTM decoder was used

to generate the output summary from the encoded input document. Beam-search

was applied to avoid greedy predictions while generating output.

Bag-of-Words Encoder

The Bag-of-Words encoder ignores the document word order and represents a doc-

ument as the averaged sum of its word embeddings. The only learned parameter

in this model is the word embeddings matrix.

The model uses the following equations, where Di denotes the word i in the

document D:

encbow(D) = sum(pT D̃) (4.7)

D̃ = [emb(D1), emb(D2), ..., emb(Dn)] (4.8)

p = [1/n, 1/n, ..., 1/n] (4.9)

Convolutional Encoder

One of the major problems of bag-of-words based methods is the inability to un-

derstand multi-words expressions, for example if the input document contains two
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different full names the bag-of-words encoder cannot encode the 4 words repre-

senting names as two distinctive entities since it ignores all word order. The so-

lution to this problem is the convolutional encoder [57, 58] (CE). The CE applies

a series of 1-dimensional convolutions and max pooling operations over the em-

bedded document in order to represent it as a fixed size vector. The convolution

operation can be considered as an n-gram feature extractor.

encconv(D) = conv
l(D̃) (4.10)

D̃ = [emb(D1), emb(D2), ..., emb(Dn)] (4.11)

conv(V ) = maxpool(conv1d(V )) (4.12)

The parameters of this model include the embedding matrix (1 row for each

word in the vocabulary times the number of dimensions used for the word embed-

dings), and the convolution filters.

Attention-Based Encoder

The last encoder described in the paper is an attention-based encoder (ATB) sim-

ilar to the one described in the previous section - a combination of an RNN en-

coder, attention mechanism and RNN decoder. This ATB encoder produces the

best results on the task.

Experiments

The model was trained on the GIGAWORD dataset and tested on DUC-2004 sin-

gle sentence summaries and a subset of held out sentences from GIGAWORD.
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DUC-2004
MODEL ROUGE-1 ROUGE-2 ROUGE-L
Topiary 25.12 6.46 20.12
MOSES 26.50 8.13 22.85

BOW 22.15 4.60 18.23
ABS 28.18 8.49 23.81

GIGAWORD
MODEL ROUGE-1 ROUGE-2 ROUGE-L
MOSES 28.77 12.10 26.44

ABS 31.00 12.65 28.34

Table 4.1: Experimental results for “A Neural Attention Model for Sentence Sum-
marization.” ABS refers to the Attention-based encoder model, BOW to the same
model with bag-of-words encoder.

For evaluation ROUGE [25] was used. For baseline scores, the MOSES statistical

phrase translation method [59] was used: that is, abstractive summarization was

cast as a problem of translating from “long source language” to “short target lan-

guage.” They also compare with the Topiary [60] system which was the winning

system in the DUC 2004 shared task.

Example of ATB encoder Summaries

INPUT:“a detained iranian-american academic accused of acting against na-

tional security has been released from a tehran prison after a hefty bail was

posted, a to p judiciary official said tuesday.”

GOLD: “iranian-american academic held in tehran released on bail.”

OUTPUT: “detained iranian-american academic released from prison after hefty

bail.”

The attention-based mechanism produces much better results than the bag-of-

words encoder on the task. As a language model, it also produces dramatically
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Figure 4.6: Example of attention based encoder attention weights values for dif-
ferent generation steps.

lower perplexity (27) than an n-gram model (perplexity of 183), the bag-of-words

model (43) or the convolution model (37).

Another advantage of the attention-based model is that it produces alignment

data between source and target sequences which can be visualized (see Fig. 4.6)

and interpreted.

Training of the ABS system on the Gigaword dataset takes about 4 days and

relies critically on GPU hardware to converge fast enough. The code of the method

is available.4

4https://github.com/facebookarchive/NAMAS
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4.4.2 Abstractive Text Summarization using Sequence-to-sequence

RNNs and Beyond

The paper “Abstractive Text Summarization using Sequence-to-sequence RNNs

and Beyond” [55] introduces two novel concepts to neural encoder-decoder archi-

tecture for summarization: the large vocabulary trick (LVT) [61] and Switching

Generator-Pointer. The paper is also the first to use the CNN/Daily-Mail corpus

for training, so it is able to generate summaries longer than one sentence.

Large Vocabulary Trick

The LVT is a method to speed-up neural-networks that generates words from

a large vocabulary by exploiting domain knowledge. As discussed above, in

seq2seq architectures words are generated by sampling the output of a softmax

distribution. The computation of this softmax function on very large vocabularies

(50,000 and more distinct words) is a computational bottleneck. It is also un-

likely to provide robust predictions when sampling rare words. The LVT comes

to improve on this situation.

For summarization, we can assume that summaries will not introduce con-

cepts that didn’t appear in the original text. In more practical terms, the output

vocabulary of the network can be restricted to the vocabulary of the current input

document (together with a set of stop-words/very common words). Restricting

the vocabulary can be achieved by using only the relevant vectors from the matrix

used to transform the decoder output to the vocabulary-size output vector. The

LVT both reduces computation time (since we multiply a smaller matrix) and ef-

fectively automatically assigns zero probability to irrelevant terms, thus improving
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the perplexity of the model.

Switching Generator-Pointer

In the news-stories domain used for training most summarization methods, each

story introduces story specific named-entities. In order to adapt to such rare en-

tities, they can be replaced with the UNK (unknown) token. This method pro-

duces unreadable summaries and introduces systematic confusion between dif-

ferent named entities. Another way to deal with rare words is the switching

generator-pointer mechanism.

The switching generator-pointer enables the network to copy words from its

input instead of just selecting words from the general vocabulary. It does this by

changing the output of the network: first it introduces a switch gate St – if the

value of the switch at decoding step t is 0, then the network will produce a word

from the vocabulary (using softmax over a vocabulary size vector); if the value of

the switch is 1, then it will copy a word from the input. In order to make sure the

attention mechanism will point to the correct word, categorical cross-entropy loss

is applied to the attention weights (where the copied word value should be one

and zero for other words). The value of the switch is determined by the following

equation:

P (St = 1) = sigmoid(Vs · (Ws1 · enct +Ws2 · E(Ot�1) +Ws3 · ht +Bs))

(4.13)

where Vs,Ws1,Ws2,Ws3, Bs are learned parameters, enct is the attended en-

coder output at step t, E(Ot�1) is the embedded value of the previously generated
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DUC-2004
MODEL ROUGE-1 ROUGE-2 ROUGE-L

ABS 28.18 8.49 23.81
LVT+switch 28.35 9.46 24.59

Table 4.2: Comparison of Attention-Based Encoder (ABS) to Attention-Based
Encoder with LVT and switching generator-pointer mechanism.

word and ht is the decoder state.

In order to determine the word the network should copy when St = 1, the

network uses the attention weights, the word with the highest attention value at

decoding step t is copied.

Losst = Gt log âtiP (St) + (1�Gt) log (P (Wj))(1� P (St)) (4.14)

The loss at decoding step t is Losst, where Gt is the observed switch value at

step t and P (St) is the predicted switch value, âti is the normalized attention value

of the word at index i where i is the index designated to be copied, and P (Wi) is

the probability of generating the word Wi (and Wi is the ground truth).

Experiments

When compared to the best model presented in the ABS system (“A Neural At-

tention Model for Sentence Summarization”) training on GIGAWORD and testing

with DUC-2004, the addition of LVT and switching generator-pointer improves

all ROUGE scores.

Since the paper was presented after the introduction of the CNN/Daily-Mail

dataset it was possible to test it on tasks longer than a single sentences. The

paper tested the presented model on other DUC single document tasks but didn’t
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compare it to other abstractive models.

4.4.3 Get To The Point: Summarization with Pointer-Generator

Networks

This paper improves the architecture to attend to another problem in existing ab-

stractive summarization methods: repetition when generating multi-sentence text

as observed in Figure 4.7.

Coverage Mechanism

The coverage mechanism contains a coverage vector Cv that contains the sum of

all attention weights (a) from previous decoding steps.

Ct =
t�1X

i=1

ai (4.15)

Once Cv is obtained it can be used to force the attention mechanism to attend to

words it didn’t previously attend to by using it as an input to the attention function

e
t
i = v

T tanh(W1hi +W2st +W3Ct + battn) (4.16)

and adding a special loss term to force the attention mechanism to attend to new

words:

CovLoss =
X

i

min(at,i, ct,i) (4.17)

Losst = LogLoss+ �CovLoss (4.18)
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Figure 4.7: Comparison of different abstractive summarization with repetition
highlighted. Repetition avoidance is achieved with a coverage mechanism.
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CNN/Daily-Mail
MODEL ROUGE-1 ROUGE-2 ROUGE-L

ABS+ 30.49 11.17 28.08
LVT+switch 35.46 13.30 32.65

switch+coverage 39.53 17.28 36.38

Table 4.3: Comparison of Attention-Based Encoder (ABS) to Attention-Based
Encoder with LVT and switching generator-pointer mechanism and switching
generator-pointer mechanism and coverage mechanism.

Experiments

A model with the coverage mechanism and switching generator-pointer was trained

and tested on the CNN/Daily-Mail dataset.

The combination of the improvements addressing large vocabulary, rare words

and named entities and coverage provides dramatic improvements to all ROUGE

measures. It also enabled the models to work in a reliable manner on longer input

documents 5.

The code of the system is available.6

4.4.4 Sentence Simplification with Deep Reinforcement Learn-

ing

The last improvement we will discuss is the introduction of reinforcement learn-

ing (RL) to sequence-to-sequence neural architectures. RL enables the network

to be trained on sequence level loss instead of per-word loss (aka imitation learn-

ing), which enables us to train the model to achieve more abstract features such

as text coherence instead of just copying the correct answer. Another important
5Training time on the CNN/Dialy-Mail dataset and ge-force 1080 GPU is one week
6https://github.com/abisee/pointer-generator
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advantage to RL is that it addresses “exposure bias” [62, 63], the notion that while

training, the model will only encounter scenarios in which all previous prediction

were ground truth. This scenario is not realistic at prediction time – as soon as

one prediction is off, later predictions are performed in uncharted territory.

Reinforcement Learning Algorithm

The REINFORCE algorithm [64] is usually used to solve sequential-decision

problems. Such problems are modeled as an agent that can take actions that affect

an environment. After a sequence of actions has been executed, the agent receives

a reward which enables the agent to adjust its action taking policy to maximize

the reward. 7

Reinforcement Learning
player ( init player()
while training do

env ( init env()
decisions ( empty list()
while env.game not ended() do

move ( player.choose move(env)
decisions.append(move, env.copy())
env ( env.update env(move)

reward = env.get reward()
for move, env ( decisions do

player.update weights(move, env)

For example in order to apply the algorithm to the game of chess, the agent

will be the player, the environment will be the chess-board and pieces position,

actions are the player’s moves and reward will be the eventual outcome of the

game 1 if the player won and -1 if the player lost. At each turn, the player will
7For further reading about reinforcement learning, we recommend this blog-post http://
karpathy.github.io/2016/05/31/rl/
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Agent

Environment

Action Reward

Figure 4.8: Reinforcement learning settings.

chose what move to make, the move will change the environment (the move of

the other player will be considered as part of the change in the environment), the

player will make the next move according to the changed environment. Once the

game is over, we reward the player according to the score. Essentially in this

scenario we are training an agent that given the state of the board decides on the

next move to make.

Reinforcement Learning for Sequence-to-Sequence Models

In order to adopt the RL algorithm to the context of seq2seq models, the agent will

be the model, the environment will be the generated output and the reward will be

a predefined score function for the complete sentence (after the model generated

the end-of-sentence token). In order to speed up the learning process, instead of

training the model from scratch, the model is first trained using regular per-word

training and we use the RL algorithm to fine-tune the network.

In order to use RL for automatic summarization, the paper [56] suggests using
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PWKP
MODEL BLEU SARI

ABS+ 88.85 35.66
RL+switch 80.12 37.27

Table 4.4: Comparison of Attention-Based Encoder (ABS) to Attention-Based
Encoder with switching generator-pointer mechanism trained using reinforcement
learning algorithm

the following reward function.

Reward(sent) = �ss(sent) + �rr(sent) + �ff(sent) (4.19)

s(sent) = SARI(sent) (4.20)

r(sent) = cos(sent, gold) (4.21)

f(sent) = LM(sent) (4.22)

The s term represents the sentence simplicity score, it is calculated using the

SARI function defined to measure text simplicity in Xu et al. [65]. The r term

represents the relevance of the output to the source sentence: it is the cosine sim-

ilarity function on the generated sentence and the ground truth vectors. The f

term is the fluency score (how fluent is the text) measured using an LSTM-trained

language model.

Experiments

The model was trained and tested on the PWKP dataset and compared the attention-

encoder-decoder model. The output of the model was scored using BLEU [23] and

the SARI function (also used for reinforcement).

While the RL algorithm did not improve the network term coverage, it gener-
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ated simpler text according to the SARI evaluation.

4.5 Conclusion

In this chapter, we covered recent developments in abstractive summarization us-

ing neural networks. We first covered the available datasets for the task. We

then introduced the basic building blocks used by all the recent models: RNNs,

sequence to sequence models, attention mechanism.

We then surveyed incremental advancements of abstractive summarization

starting from the first neural encoder-decoder model with attention mechanism.

The following techniques bring significant improvements to abstractive summa-

rizers:

• Deal with large vocabularies using the large-vocabulary-trick which exploits

the shared vocabulary of the input and output

• Deal with rare words by adding the ability of switching between generating

words and copying pointers to the source sequence.

• Avoid repetitions by adding a distraction mechanism to improve attention

coverage.

• Finally, we covered attempts at using reinforcement learning to fine-tune

our summarization models at the sentence level.

All the methods covered have brought dramatic improvements to the field of

single document generic abstractive summarization in the last couple of years.

These early steps indicate that fully abstractive summarization addressing longer
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documents and more advanced tasks such as query-focused and multi-document

summarization can be achieved by combining the re-usable building blocks we

have described with higher-level models that address rhetorical and information

flow aspects of the challenging summarization task.



Part III

Application of Neural Methods for

Automatic Summarization
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Chapter 5

Sentence Embedding Evaluation

Using Pyramid Annotation

Word embedding vectors are used as input for seq2seq models. Choosing the

right model and features for producing such vectors is not a trivial task and dif-

ferent embedding methods can greatly affect results. In this chapter we repurpose

the “Pyramid Method” annotations used for evaluating summarization to create

a benchmark for comparing embedding models when identifying paraphrases of

text snippets containing a single clause. We present a method of converting pyra-

mid annotation files into two distinct sentence embedding tests. We show that our

method can produce a good amount of testing data, analyze the quality of the test-

ing data, perform test on several leading embedding methods, and finally explain

the downstream usages of our task and its significance.

69
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5.1 Introduction

Word vector embeddings have become a standard building block for NLP applica-

tions. By representing words using continuous multi-dimensional vectors, appli-

cations take advantage of the natural associations among words to improve task

performance. For example, POS tagging [66], NER [67], parsing [68], Seman-

tic Role Labeling [69] or sentiment analysis [70] have all been shown to benefit

from word embeddings, either as additional features in existing supervised ma-

chine learning architectures, or as exclusive word representation features. In deep

learning applications, word embeddings are typically used as pre-trained initial

layers in deep architectures, and have been shown to improve performance on a

wide range of tasks as well (see for example, [51, 71, 72]).

One of the key benefits of word embeddings is that they can bring to tasks with

small annotated datasets and small observed vocabulary, the capacity to generalize

to large vocabularies and to smoothly handle unseen words, trained on massive

scale datasets in an unsupervised manner. Training word embedding models is

still an art with various embedding algorithms possible and many parameters that

can greatly affect the results of each algorithm. It remains difficult to predict

which word embeddings are most appropriate to a given task, whether fine tuning

of the embeddings is required, and which parameters perform best for a given

application.

We introduce a novel dataset for comparing embedding algorithms and their

settings on the specific task of comparing short clauses. The current state-of-

the-art paraphrase dataset [73] is quite small with 4,076 sentence pairs (2,753

positive). The Stanford Natural Language Inference (SNLI) [74] corpus contains
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570k sentences pairs labeled with one of the tags: entailment, contradiction, and

neutral. SNLI improves on previous paraphrase datasets by eliminating indeter-

minacy of event and entity coreference which make human entailment judgment

difficult. Such indeterminacies are avoided by eliciting descriptions of the same

images by different annotators.

We repurpose manually created data sets from automatic summarization to

create a new paraphrase dataset with 197,619 pairs (8,390 positive and challeng-

ing distractors in the negative pairs). Like SNLI, our dataset avoids semantic

indeterminacy because the texts are generated from the same news reports we

thus obtain definite entailment judgments but in the richer domain of news report

as opposed to image descriptions. The propositions in our dataset are on average

12.1 words long (as opposed to about 8 words for the SNLI hypotheses).

In addition to paraphrase, our dataset captures a notion of centrality, the clause

elements captured are Summary Content Units (SCU) which are typically shorter

than full sentences and intended to capture proposition-level facts. As such, the

new dataset is relevant for exercising the large family of “Sequence to Sequence”

(seq2seq) tasks involving the generation of short text clauses [50].

The chapter is structured as follows: 5.2 describes the process for generating

a paraphrase dataset from a pyramid dataset; in 5.3, we evaluate a number of

algorithms on the new benchmark and in 5.4, we explain the importance of the

task.
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Non-paraphrase pair:
‘Countries worldwide
sent Equipment,’ ‘Coun-
tries worldwide sent
Relief Workers’

Paraphrase pair:
‘countries worldwide
sent money equipment,’
‘rescue equipment
poured in from around
the world’

Figure 5.1: Binary test pairs example

5.2 Repurposing Pyramid Annotations

We define two types of tests that can be produced from a pyramid file: a binary

decision test and a ranking test. For the binary decision test, we collect pairs

of different SCUs from manual summaries and the label given to the SCU by

annotators. The binary decision consists of deciding whether the pair is taken

from the same SCU. In order to make the test challenging and still achievable, we

add the following constraints on pair selection:

• Both items must contain at least 3 words;

• For non-paraphrase pairs, both items must match on more than 3 words;

• Both items must not include any pronouns;

• The pair must be lexically varied (at least one content word must be different

across the items)

For the ranking test, we generate a set of multiple choice questions by taking

as a question an SCU appearance in the text and the correct answer is another

appearance of the same SCU in the test. To create synthetic distractors, we use

the 3 most lexically similar text segments from distinct SCUs:
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Morris Dees co-founded the SPLC:

1. Morris Dees was co-founder of the Southern Poverty Law Center
(SPLC) in 1971 and has served as its Chief Trial Counsel and
Executive Director

2. Dees and the SPLC seek to destroy hate groups through multi-million
dollar civil suits that go after assets of groups and their leaders

3. Dees and the SPLC have fought to break the organizations by legal
action resulting in severe financial penalties

4. The SPLC participates in tracking down hate groups and publicizing
their activities in its Intelligence Report

Figure 5.2: Ranking test example question

Using DUC-2007, 2006 and 2005 pyramid files (all contain news stories), we

created 8,755 questions for the ranking test and for the binary test we generated

8,390 positive pairs, 189,229 negative pairs for a total 197,619 pairs. The propo-

sitions in the dataset contain 95,286 words (6,882 unique).

5.3 Baseline Embeddings Evaluation

In order to verify that this task indeed is sensitive to differences in word em-

beddings, we evaluated 8 different word embeddings on the task as a baseline:

Random, None (One-Hot embedding), word2vec [75] trained on Google News

and two models trained on Wikipedia with different window sizes [76], word2vec

trained with Wikipedia dependencies [76], GloVe [43] and Open IE based em-

beddings [77]. For all of the embeddings, we measured sentence similarity as the

cosine similarity of the normalized sum of all the words in the sentences.1

1Using spaCy for tokenization
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Binary Test (F-
measure)

Ranking Test
(Success Rate)

Ranking Test
(Mean reciprocal
rank)

Random-
Baseline 0.04059 24.662% 0.52223

One-Hot 0.26324 63.973% 0.77202
word2vec-BOW
(google-news) 0.42337 66.960% 0.78933

word2vec-
BOW2
(Wikipedia)

0.39450 61.684% 0.75274

word2vec-
BOW5
(Wikipedia)

0.40387 62.886% 0.76292

word2vec-Dep 0.39097 60.025% 0.74003
GloVe 0.37870 63.000% 0.76389
Open IE Embed-
ding 0.42516 65.667% 0.77847

Table 5.1: Different embedding performance on binary and ranking tests.

For the binary decision test, we evaluated the embedding by finding a thresh-

old for answering where a pair is a paraphrase that maximizes the F-measure

(trained over 10% the dataset and tested on the rest) of the embedding decision.

For the rank test, we computed the percentage of questions where the correct an-

swer achieved the highest similarity score and the MRR measure [78].

The OpenIE Embedding model scored the highest for the binary test (0.42

F). Word2vec model trained on google news achieved the best success rate in the

ranking test (precision@1 of 66.9%), significantly better than the word2vec model

trained on Wikipedia (62.8%). MRR for ranking was dominated by word2vec with

0.41.
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5.4 Task Significance

The task of identifying paraphrases specifically extracted from pyramids can aid

NLP sub-fields such as:

• Automatic Summarization: Identifying paraphrases can both help identi-

fying salient information in multi-document summarization and evaluation

by recreating pyramid files and applying them on automatic summaries;

• Textual Entailment: Paraphrases are bi-directional entailments;

• Sentence Simplification: SCUs capture the central elements of meaning in

observable long sentences.

• Expansion of Annotated Datasets: Given an annotated dataset (e.g., aligned

translations), unannotated sentences could be annotated the same as their

paraphrases

5.5 Conclusion

We presented a method of using pyramid files to generate paraphrase detection

tasks. The suggested task has proven challenging for the tested methods, as indi-

cated by the relatively low F-measures reported in Table 1 on most models. Our

method can be applied on any pyramid annotated dataset so the reported numbers

could increase by using other datasets such as TAC 2008, 2009, 2010, 2011 and

2014.2 We believe that the improvement that this task can provide to downstream

applications is a good incentive for further research.

2http://www.nist.gov/tac/tracks/index.html



Chapter 6

Multi-Label Classification on

Patient Notes With Neural Encoders

In the context of the Electronic Health Record, automated diagnosis coding of

patient notes is a useful task, but a challenging one due to the large number of

codes and the length of patient notes. We investigate three different neural en-

coders and an SVM model for assigning multiple ICD codes to discharge sum-

maries taken from both MIMIC II and III. We present Hierarchical Attention-

bidirectional Gated Recurrent Unit (HA-GRU), a hierarchical approach to tag a

document by identifying the sentences relevant for each label. HA-GRU achieves

state-of-the art results. Furthermore, the learned sentence-level attention layer

highlights the model decision process, allows easier error analysis, and suggests

future directions for improvement.

In the context of our analysis of neural network architectures for abstractive

summarizations, the task of multi-label document classification we study here

serves as an auxiliary task to assess the capability of RNN encoders to capture
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the meaning of long documents. In previous work [79] auxiliary tasks have been

used to probe the type of information preserved in various encoding schemes: re-

covering sentence length, test for the presence of specific words and ordering the

words from the original text. Beyond these formal properties, we used a multi-

labels classification as an auxiliary task to evaluate the encoders ability to preserve

semantic information.

6.1 Introduction

In Electronic Health Records (EHRs), there is often a need to assign multiple

labels to a patient record, choosing from a large number of potential labels. Diag-

nosis code assignment is such a task, with a massive amount of labels to choose

from (14,000 ICD9 codes and 68,000 ICD10 codes). Large-scale multiple pheno-

typing assignment, problem list identification, or even intermediate patient repre-

sentation can all be cast as a multi-label classification over a large label set. More

recently, in the context of predictive modeling, approaches to predict multiple

future healthcare outcomes, such as future diagnosis codes or medication orders

have been proposed in the literature. There again, the same setup occurs where

patient-record data is fed to a multi-label classification over a large label set.

In this chapter, we investigate how to leverage the unstructured portion of the

EHR, the patient notes, along a novel application of neural architectures. We focus

on three characteristics: (i) a very large label set (6,500 unique ICD9 codes and

1,047 3-digit unique ICD9 codes); (ii) a multi-label setting (up to 20 labels per

instance); (iii) instances are long documents (discharge summaries on average

1,900-word long); and (iv) furthermore, because we work on long documents, one
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critical aspect of the multi-label classification is transparency—to highlight the

elements in the documents that explain and support the predicted labels. While

there has been much work on each of these characteristics, there has been limited

work to tackle all at once, particularly in the clinical domain.

We experiment with four approaches to classification: an SVM-based one-vs-

all model, a continuous bag-of-words (CBOW) model, a convolutional neural

network (CNN) model, and a bidirectional Gated Recurrent Unit model with

a Hierarchical Attention mechanism (HA-GRU). Among them, the attention

mechanism of the HA-GRU model provides full transparency for classification

decisions. We rely on the publicly available MIMIC datasets to validate our exper-

iments. A characteristic of the healthcare domain is long documents with a large

number of technical words and typos/misspellings. We experiment with simple

yet effective preprocessing of the input texts.

Our results show that careful tokenization of the input texts, and hierarchical

segmentation of the original document allow our Hierarchical Attention GRU ar-

chitecture to yield the most promising results, over the SVM, CBOW, and CNN

models, while preserving the full input text and providing effective transparency.

6.2 Previous Work

We review previous work in the healthcare domain as well as recent approaches

to extreme multi-label classification, which take place in a range of domains and

tasks.
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6.2.1 Multi-label Patient Classifications

Approaches to classification of patient records against multiple labels fall into

three types of tasks: diagnosis code assignment, patient record labeling, and pre-

dictive modeling.

Diagnosis Code Assignment. Automated ICD coding is a well established task,

with several methods proposed in the literature, ranging from rule based [80, 81]

to machine learning such as support vector machines, Bayesian ridge regression,

and K-nearest neighbor [82, 83]. Some methods exploit the hierarchical structure

of the ICD taxonomy [84, 85], while others incorporated explicit co-occurrence

relations between codes [86]. In many cases, to handle the sheer amount of labels,

the different approaches focus on rolled-up ICD codes (i.e., 3-digit version of the

codes and their descendants in the ICD taxonomy) or on a subset of the codes,

like in the shared community task for radiology code assignment [87].

It is difficult to compare the different methods proposed, since each relies

on different (and usually not publicly available) datasets. We experiment with the

MIMIC dataset, since it is publicly available to the research community. Methods-

wise, our approach departs from previous work in two important ways: we ex-

periment with both massively large and very large label sets (all ICD9 code and

rolled-up ICD9 codes), and we experiment with transparent models that highlight

portions of the input text that support the assigned codes.

Patient Record Labeling. Other than automated diagnosis coding, most multi-

label patient record classifiers fall in the tasks of phenotyping across multiple

conditions at once. For instance, the UPhenome model takes a probabilistic gen-
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erative approach to assign 750 latent variables [88]. More recently, in the context

of multi-task learning, Harutyunyan and colleagues experimented with phenotyp-

ing over 25 critical care conditions [89].

Predictive Modeling. Previous work in EHR multi-label classification has mostly

focused on predictive scenarios. The size of the label set varies from one approach

to another, and most limit the label set size however: DeepPatient [90] predicts

over a set of 78 condition codes. [91] leverage an LSTM model to predict over

a vocabulary of 128 diagnosis codes. DoctorAI [92] predicts over a set of 1,183

3-digit ICD codes and 595 medication groups. The Survival Filter [93] predicts a

series of future ICD codes across approximately 8,000 ICD codes.

Inputs to Multi-Label Classifications. Most work in multi-label classification

takes structured input. For instance, the Survival Filter expects ICD codes as

input to predict the future ICD codes. DoctorAI takes as input medication orders,

ICD codes, problem list, and procedure orders at a given visit. Deep Patient does

take the content of notes as input, but the content is heavily preprocessed into a

structured input to their neural network, by tagging all texts with medical named

entities. In contrast, our approach is to leverage the entire content of the input

texts. Our work contributes to clinical natural language processing [94], which

only recently investigated neural representations and architectures for traditional

tasks such as named entity recognition [95].
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6.2.2 Multi-label Extreme Classification

In extreme multi-label learning, the objective is to annotate each data point with

the most relevant subset of labels from an extremely large label set. Much work

has been carried outside of the healthcare domain on tasks such as image clas-

sification [96, 97], question answering [98], and advertising [99]. In [97], the

task of annotating a very large dataset of images (> 10M ) with a very large label

set (> 100K) was first addressed. The authors introduced the WSABIE method

which relies on two main features: (i) records (images) and labels are embed-

ded in a shared low-dimension vector space; and (ii) the multi-label classification

task is modeled as a ranking problem, evaluated with a Hamming Loss on a P@k

metric. The proposed online approximate WARP loss allowed the algorithm to

perform fast enough on the scale of the dataset. We found that in our case, the

standard Micro-F measure is more appropriate as we do not tolerate approximate

annotations to the same extent as in the image annotation task.

The SLEEC method [100] also relies on learning an embedding transforma-

tion to map label vectors into a low-dimensional representation. SLEEC learns

an ensemble of local distance preserving embeddings to accurately predict infre-

quently occurring labels. This approach attempts to exploit the similarity among

labels to improve classification, and learns different representations for clusters

of similar labels. Other approaches attempt to reduce the cost of training over

very large datasets by considering only part of the labels for each classification

decision [101]. SLEEC was later improved in [99] with the PfastreXML method

which also adopted P@k loss functions aiming at predicting tail labels.

In [102], the FastText method was introduced as a simple and scalable neural
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bag of words approach for assigning multiple labels to text. We test a similar

model (CBOW) in our experiments as one of our baselines.

6.3 Dataset and Preprocessing

We use the publicly available de-identified MIMIC dataset of ICU stays from Beth

Israel Deaconess Medical Center [103, 104].

6.3.1 MIMIC Datasets

To test the impact of training size, we relied on both the MIMIC II (v2.6) and

MIMIC III (v1.4) datasets. MIMIC III comprises records collected between 2001

and 2012, and can be described as an expansion of MIMIC II (which comprises

records collected between 2001 and 2008), along with some edits to the dataset

(including de-identification procedures).

To compare our experiments to previous work in ICD coding, we used the

publicly available split of MIMIC II from [85]. It contains 22,815 discharge

summaries divided into a training set (20,533 summaries) and a test-set of unseen

patients (2,282 summaries). We thus kept the same train and the test-set from

MIMIC II, and constructed an additional training set from MIMIC III. We made

sure that the test-set patients remained unseen in this training set as well. Overall,

we have two training sets, which we refer to as MIMIC II and MIMIC III, and a

common test-set comprising summaries of unseen patients.

While there is a large overlap between MIMIC II and MIMIC III, there are

also marked differences. We found many cases where discharge summaries from

2001-2008 are found in one dataset but not in the other. In addition, MIMIC III
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MIMIC II MIMIC III Test Set

# of records 20,533 49,857 2,282
# of unique tokens 69,248 119,171 33,958
Avg # of tokens / record 1,529 1,947 1,893
Avg # of sentences / record 90 112 104
# of full labels 4,847 6,527 2,451
# of rolled-up labels 948 1,047 684
Label Cardinality 9.24 11.48 11.42
Label Density 0.0019 0.0018 0.0047
% labels with 50+ records 11.33% 18.19% 4.08%

Table 6.1: Datasets descriptive statistics.

contains addenda to the discharge summaries that were not part of MIMIC II.

After examining the summaries and their addenda, we noticed that the addenda

contain vital information for ICD coding that is missing from the main discharge

summaries; therefore, we decided to concatenate the summaries with their ad-

denda.

Table 6.1 reports some descriptives statistics regarding the datasets. Overall,

MIMIC III is larger than MIMIC II from all standpoints, including amounts of

training data, vocabulary size, and overall number of labels.

6.3.2 ICD9 Codes

Our label set comes from the ICD9 taxonomy. The International Classification

of Diseases (ICD) is a repository maintained by the World Health Organization

(WHO) to provide a standardized system of diagnostic codes for classifying dis-

eases. It has a hierarchical structure, connecting specific diagnostic codes through

is-a relations. The hierarchy has eight levels, from less specific to more specific.

ICD codes contain both diagnosis and procedure codes. In this chapter, we focus
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on diagnosis codes only. ICD9 codes are conveyed as 5 digits, with 3 primary

digits and 2 secondary ones.

Table 6.1 provides the ICD9 label cardinality and density as defined by [96].

Cardinality is the average number of codes assigned to records in the dataset.

Density is the cardinality divided by the total number of codes. For both training

sets, the number of labels is of the same order as the number of records, and the

label density is extremely low. This confirms that the task of code assignment

belongs to the family of extreme multi-label classification.

We did not filter any ICD code based on their frequency. We note, however

that there are approximately 1,000 frequent labels (defined as assigned to at least

50 records) (Table 6.1). We experimented with two versions of the label set: one

with all the labels (i.e., 5-digit), and one with the labels rolled up to their 3-digit

equivalent.

6.3.3 Input Texts

Tokenization. Preprocessing of the input records comprised the following steps:

(i) tokenize all input texts using spaCy library; 1 (ii) convert all non-alphabetical

characters to pseudo-tokens (e.g., “11/2/1986” was mapped to “dd/d/dddd”); (iii)

build the vocabulary as tokens that appear at least 5 times in the training set; and

(iv) map any out-of-vocabulary word to its nearest word in the vocabulary (us-

ing the edit distance). This step is simple, yet particularly useful in reducing the

number of misspellings of medical terms. These preprocessing steps has a strong

impact on the vocabulary. For instance, there were 1,005,489 unique tokens in

MIMIC III and test set before preprocessing, and only 121,595 remaining in the
1https://spacy.io/
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vocabulary after preprocessing (an 88% drop). This step improved F-measure per-

formance by ˜0.5% when tested on the CBOW and CNN methods (not reported).

Hierarchical Segmentation. Besides tokenization of the input texts, we carried

one more level of segmentation, at the sentence level (using the spaCy library

as well). There are two reasons for preprocessing the input texts with sentence

segmentation. First, because we deal with long documents, it is impossible and

ineffective to train a sequence model like an GRU on such long sequences. In pre-

vious approaches in document classification, this problem was resolved by trun-

cating the input documents. In the case of discharge summaries, however, this

is not an acceptable solution: we want to preserve the entire document for trans-

parency. Second, we are inspired by the moving windows of [105] and posit that

sentences form linguistically inspired windows of word sequences.

Beyond tokens and sentences, discharge summaries exhibit strong discourse-

level structure (e.g., history of present illness and past medical history, followed by

hospital course, and discharge plans) [106]. This presents an exciting opportunity

for future work to exploit discourse segments as an additional representation layer

of input texts.

6.4 Methods

We describe the four models with which we experimented. ICD coding has been

evaluated in the literature according to different metrics: Micro-F, Macro-F, a vari-

ant of Macro-F that takes into account the hierarchy of the codes [85], Hamming

and ranking loss [107], and a modified version of mean reciprocal rank (MRR)
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[108]. We evaluate performance using the Micro-F metric, since it is the most

commonly used metric.

SVM. We used Scikit Learn [109] to implement a one-vs-all, multi-label binary

SVM classifier. Features were bag of words, with tf*idf weights (determined from

the corpus of release notes) for each label. Stop words were removed using Scikit

Learn default English stop-word list. The model fits a binary SVM classifier for

each label (ICD code) against the rest of the labels. We also experimented with �
2

feature filtering to select the top-N words according to their mutual information

with each label, but this did not improve performance.

We experimented with various ways to exploit the ICD label hierarchy in the

one-vs-rest schemes, but this did not lead to any measurable improvement.

CBOW. The continuous-bag-of-words (CBOW) model is inspired by the word2vec

CBOW model [42] and FastText [102]. Both methods use a simple neural-network

to create a dense representation of words and use the average of this representation

for prediction. The word2vec CBOW tries to predict a word from the words that

appear around it, while our CBOW model for ICD classification predicts ICD9

codes from the words of its input discharge summary.

The model architecture consists of an embedding layer applied to all the words

in a given input text [w1, w2, ..., wn], where wi is a one-hot encoding vector of the

vocabulary. E is the embedding matrix with dimension nemb ⇥ V , where V is the

size of the vocabulary and nemb is the embedding size (set to 100).

The embedded words are averaged into a fixed-size vector and are fed to a

fully connected layer with a matrix W and bias b, where the output dimension is
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Figure 6.1: CBOW architecture on the left and CNN model architecture on the
right.

the number of labels. We use a sigmoid activation on the output layer so all values

are in the range of [0 � 1] and use a fixed threshold (0.5) to determine whether

to assign a particular label. To train the model, we used binary cross-entropy loss

(loss(target, output) = �(target · log(output)+(1� target) · log(1�output)).

Embedding = E · [w1, w2, ..., wn]

Averaged = 1/n⌃e2Embedding(e)

Prob = sigmoid(W · Averaged+ b)

While the model is extremely lightweight and fast it suffers from known bag-

of-words issues: (i) it ignores word order; i.e., if negation will appear before a

diagnosis mention, the model would not be able to learn this; (ii) multi-word-

expressions cannot be identified by the model, so different diagnoses that share
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lexical words will not be distinguished by the model.

CNN. To address the problems of the CBOW model, the next model we inves-

tigate is a convolutional neural network (CNN). A one dimensional convolution

applied on list of embedded words could be considered as a type of n-gram model,

where n is the convolution filter size.

The architecture of this model is very similar to the CBOW model, but instead

of averaging the embedded words we apply a one dimensional convolution layer

with filter f , followed by a max pooling layer. On the output of the max pool

layered a fully connected layer was applied, like in the CBOW model. We also

experimented with deeper convolution networks and inception module [110], but

they did not yield improved results.

Embedding = E · [w1, w2, ..., wn]

Conved = max
i2channels

([wi, wi+1, ..., wi+filter size] ⇤ filter)

Prob = sigmoid(W · Conved+ b)

In our experiments, we used the same embedding parameter as in the CBOW

model. In addition, we set the number of channels to 300, and the filter size to 3.

HA-GRU. We now introduce the Hierarchical Attention-bidirectional Gated Re-

current Unit model (HA-GRU) an adaptation of a Hierarchical Attention Net-

works [111] to be able to handle multi-label classification. A Gated Recurrent

Unit (GRU) is a type of Recurrent Neural Network. Since the documents are long
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(see Table 6.1 up to 13,590 tokens in the MIMIC III training set), a regular GRU

applied over the entire document is too slow as it requires a number of layers of

the document length. Instead we apply a hierarchal model with two levels of bidi-

rectional GRU encoding. The first bidirectional GRU operates over tokens and

encodes sentences. The second bidirectional GRU encodes the document, applied

over all the encoded sentences. In this architecture, each GRU is applied to a

much shorter sequence compared to a flat GRU model.

To take advantage of the property that each label is invoked from different parts

of the text, we use an attention mechanism over the second GRU with different

weights for each label. This allows the model to focus on the relevant sentences

for each label [98]. To allow clarity into what the model learns and enable error

analysis, attention is also applied over the first GRU with the same weights for all

the labels.

ClassifiersClassifiers

!","!",$!",% !",&'…

Sentence	Encoder

Document	GRU	
Layer

Classifiers

!$,"!$,$!$,% !$,&)… !*,"!*,$!*,% !*,&+…

Sentence	Encoder Sentence	Encoder

…
Figure 6.2: HA-GRU model architecture overview.

Each sentence in the input text is encoded to a fixed length vector (64) by ap-

plying an embedding layer over all the inputs, applying a bidirectional GRU layer

on the embedded words, and using a neural attention mechanism to encode the
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bidirectional GRU outputs (size of 128). After the sentences are encoded into a

fixed length vector, we apply a second bidirectional GRU layer over the sentences

using different attention layers to generate an encoding specified to each class

(128⇥#labels). Finally we applied a fully connected layer with softmax for each

classifier to determine if the label should be assigned to the document. Train-

ing is achieved by using categorical cross-entropy on every classifier separately

(loss(target, output) = �
P

x output(x) · log(target(x)))

AttWeight(ini, v, w) = v · tanh(w · (ini))

AttWeight(ini, v, w) =
e
AttWeight(ini,v,w)

e

P
j AttWeightj(v,w)

Attend(in, v, w) = sum(ini · AttWeight(ini, v, w))

Embedding = E · [w1, w2, ..., wn]

EncSentsj = Attend(GRUwords(Embedding), vwords, wwords)

EncDoclabel = Attend(GRUsents(EncSents, vlabel, wlabel), )

Problabel = softmax(pwlabel · EncDoclabel + pblabel)

Where wi is a one-hot encoding vector of the vocabulary size V , E is an

embedding matrix size of nemb ⇥ V , GRUwords is a GRU layer with state size

hstate, wwords is a square matrix (hstate⇥hstate) and vwords is a vector (hstate) for the

sentence level attention. GRUsents is a GRU layer with state size of hstate. wlabel

is a square matrix (hstate ⇥ hstate) and vlabel is a vector (hstate) for the document

level attention for each class, pwlabel is a matrix (hstate ⇥ 2) and pblabel is a bias

vector with a size of 2 for each label. We implemented the model using DyNet
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[112].2
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Figure 6.3: Zoom-in of the sentence encoder and classifier.

6.5 Results

6.5.1 Model Comparison

To evaluate the proposed methods on the MIMIC datasets, we conducted the fol-

lowing experiments. In the first setting we considered all ICD9 codes as our label

set. We trained the SVM, CBOW, and CNN on the MIMIC II and on the MIMIC

III training sets separately. All models were evaluated on the same test set ac-

cording to Micro-F. In the second setting, we only considered the rolled-up ICD9
2Code available at https://github.com/talbaumel/MIMIC.
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ICD9 codes Rolled-up ICD9 codes
MIMIC II MIMIC III MIMIC II MIMIC III

SVM 28.13% 22.25% 32.50% 53.02%
CBOW 30.60% 30.02% 42.06% 43.30%
CNN 33.25% 40.72% 46.40% 52.64%
HA-GRU 36.60% 40.52% 53.86% 55.86%

Table 6.2: Micro-F on two settings (full and rolled-up ICDs) and for the four
models when trained on MIMIC II or MIMIC III datasets.

codes to their 3-digit codes. There (Table 6.2).

HA-GRU gives the best results in the rolled-up ICD9 setting, with a 7.4% and

3.2% improvement over the CNN and SVM, the second best methods, in MIMIC

II and MIMIC III respectively. In the full ICD-9 scenario, all methods yield better

results when trained on MIMIC III rather than on MIMIC II. This is expected

considering the larger size of MIMIC III over II. We note that our CNN yields the

best Micro-F when trained on MIMIC III passing the HA-GRU by a small margin.

In comparison to the previous work of [85], our one-vs-all SVM yielded bet-

ter results than their flat and hierarchy classifiers. This trend was confirmed when

training on the new MIMIC III set, as well as when using the same evaluation met-

rics of [85]. We attribute these improved results both to the one-vs-all approach

as well as our tokenization approach.

6.5.2 Label Frequency

We tested the effect of label frequency on the performance of the HA-GRU classi-

fier. We recalculated precision and recall scores on subsets of labels. The subsets

were created by sorting the labels by frequency they appear in MIMIC-III dataset

and binning them to groups of 50 labels. As such, bin 1 comprises the 50 most
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Figure 6.4: Sample text of a patient note (one sentence per line). On the left, visu-
alization for the with attention weights at the sentence and word levels associated
with the ICD9 codes, on the left sentence level attention weights for ICD9 code
“Heart failure”, on the the right for code “Traumatic pneumothorax and hemoth-
orax”.

Figure 6.5: Effect label frequency on HA-GRU performance when trained on
MIMIC III. X-axis represents the bins of labels ranked by their frequency in the
training set.

frequent ICD9 codes in the training set (with an average 12% frequency over the

records in the training set), codes in bin 2 had an average 1.9% frequency, codes

in bin 3 appeared in 1.1% of the records, up to bin 8 which 0.2% of the records in

the training set. The effect can be seen in Figure 6.5. We note that the recall score

drops much more dramatically than the precision as the label frequency decreases.
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6.5.3 Model Explaining Power

We discuss how the CNN and HA-GRU architectures can support model explain-

ing power.

CNN. To analyze the CNN prediction we can test which n-grams triggered the

max-pooling layer. Given a sentence with n words we can feed it forward through

the embedding layer and the convolution layer. The output of the convolution a

list of vectors each the size of the number of channels of the convolution layer

where vector corresponds to an n-gram. We can identify what triggered the max

pooling layer by finding the maximum value of each channel. Thus, for predicted

labels, one of the activated n-grams does include information relevant for that label

(whether correct for true positive labels or incorrect for false positive labels). For

example in our experiments, for the label: “682.6-Cellulitis and abscess of leg,

except foot” one of the activated n-gram detected was “extremity cellulitis prior”.

This transparency process can also be useful for error analysis while building

a model, as it can highlight True Positive and False Positive labels. However, it is

difficult in the CNN to trace back the decisions for False Negatives predictions.

HA-GRU For the HA-GRU model we can use attention weights to better un-

derstand what sentences and what words in that sentence contributed the most to

each decision. We can find which sentence had the highest attention score for each

label, and given the most important sentence, we can find what word received the

highest attention score. For example, in our experiments for label “428-Heart

failure” we found that the sentence with the highest attention score was “d . con-

gestive heart failure ( with an ejection fraction of dd % to dd % ) .”, while the
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token “failure” was found most relevant across all labels. Figure 6.4 provides ad-

ditional examples. Note that the “d” and “dd” tokens are from the pre-procecssing

step, which mapped all numbers to pseudo-tokens.

Like in the CNN, we can use this process for error analysis. In fact, the HA-

GRU model explains prediction with greater precision, at the sentence level. For

instance, we could explore the following False Positive prediction: the model as-

signed the label “331-Other cerebral degenerations” to the sentence:“alzheimer

’s dementia .”. We can see that the condition was relevant to the medical note,

but was mentioned under the patient’s past medical history (and not a current

problem). In fact, many of the False Positive labels under the HA-GRU model

were due to mentions belonging to the past medical history section. This suggests

that the coding task would benefit from a deeper architecture, with attention to

discourse-level structure.

In contrast to the CNN, the HA-GRU model can also help analyze False Neg-

ative label assignments. When we explored the False Negative labels, we found

that in many cases the model found a relevant sentence, but failed to classify cor-

rectly. This suggests the document-level attention mechanism is successful. For

instance, for the False Negative “682-Other cellulitis and abscess”, the most at-

tended sentence was “... for right lower extremity cellulitis prior to admission ...”.

The false positive codes for this sentence included “250-Diabetes mellitus” and

“414-Other forms of chronic ischemic heart disease”. We note that in the case of

cellulitis, it is reasonable that the classifier preferred other, more frequent codes,

as it is a common comorbid condition in the ICU.3

3Full visualizations of sample discharge summaries are provided at https://www.cs.bgu.
ac.il/˜talbau/mimicdemo
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6.6 Conclusion

We investigate four modern models for the task of extreme multi-label classifica-

tion on the MIMIC datasets. Unlike previous work, we evaluate our models on all

ICD9 codes thus making sure our models could be used for real world ICD9 tag-

ging. The tokenization step, mapping rare variants using edit distance, improved

results for CBOW and CNN models by ˜0.5%, highlighting the importance of

preprocessing data noise problems in real-world settings. The HA-GRU model

not only achieves the best performance on the task of rolled-up codes (55.86%

F1 on MIMIC III, ˜2.8% absolute improvement on the best SVM baseline) but is

able to provide insight on the task for future work such as using discourse-level

structure available in medical notes yet never used before. The ability to highlight

the decision process of the model is important for adoption of such models by

medical experts. On the sub-task of MIMIC II, which includes a smaller training

dataset, HA-GRU achieved ˜7% absolute F1 improvement, suggesting it requires

less training data to achieve top performance, which is important for domain adap-

tation efforts when applying such models to patient records from other sources

(such as different hospitals).



Chapter 7

Abstractive Query Focused

Summarization

Query Focused Summarization (QFS) has been addressed mostly using extractive

methods. Such methods, however, produce text which suffers from low coherence.

We investigate how abstractive methods can be applied to QFS, to overcome such

limitations. Recent developments in neural-attention based sequence-to-sequence

models have led to state-of-the-art results on the task of abstractive generic sin-

gle document summarization. Such models are trained in an end to end method

on large amounts of training data. We address three aspects to make abstractive

summarization applicable to QFS: (a) since there is no training data, we incor-

porate query relevance into a pre-trained abstractive model; (b) since existing

abstractive models are trained in a single-document setting, we design an iter-

ated method to embed abstractive models within the multi-document requirement

of QFS; (c) the abstractive models we adapt are trained to generate text of spe-

cific length (about 100 words), while we aim at generating output of a different

97
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size (about 250 words); we design a way to adapt the target size of the generated

summaries to a given size ratio. We compare our method (Relevance Sensitive

Attention for QFS) to extractive baselines and with various ways to combine ab-

stractive models on the DUC QFS datasets and demonstrate solid improvements

on ROUGE performance.

7.1 Introduction

The query-focused summarization (QFS) task was first introduced in DUC 2005

[12]. This task provides a set of queries paired with relevant document collections,

each collection sharing a topic. The expected output is a short summary answering

the query according to data in the documents. Current state-of-the-art methods

for the task [113, 114, 115] are extractive, i.e., the produced summary is a set of

sentences extracted from the document set.

Extractive methods tend to produce less coherent summaries than manually

crafted ones. Some examples of the weaknesses of extractive methods include

unresolved anaphora, unreadable sentence ordering, and lack of cohesiveness in

text. Another problem of extractive methods is the lack of ability to extract salient

information from a long sentence without including less salient information in-

cluded in the sentence: once the system is committed to a sentence, the full sen-

tence will be extracted. It has been well documented that extractive algorithms

[1, 116] tend to prefer longer sentences.

While most of the reasons for the weaknesses of extractive summarization

methods are hard to quantify, we can illustrate the high probability of achieving

incoherent text when applying extractive methods for QFS. We assume that a
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sentence cannot be well understood without its context if it starts with a connective

phrase (which we identify by matching a closed set of connectives) or breaks a co-

reference chain (sentences where a non-proper definite noun phrase or a pronoun

refers to a noun phrase from a preceding sentence – we identified co-reference

chains using core-NLP [117]). The percent of sentences in DUC 2007 that passed

the two conditions mentioned was lower than 11%, so only 11% of the sentences

in DUC 2007 can be understood without context.

This data on the risks of producing low coherence text is a great incentive

to test abstractive summarization methods for the task of QFS. In this work, we

aim at adapting abstractive single document summarization methods to handle the

QFS task.

The first obstacles we face are: (a) no training data is available for training end

to end QFS in a way similar to what was recently done for single document generic

abstractive summarization; (b) existing abstractive models cannot handle multiple

documents as input and do not include an explicit query relevance criterion in

their computation of salient summary content; (c) existing abstractive models have

been trained to produce short summaries regardless of the information density of

the input document. For all these reasons, a direct application of an existing state

of the art abstractive model to a QFS data sample produces inappropriate output

(see Fig. 7.1).

We hypothesize that an existing trained abstractive model encapsulates reusable

linguistic knowledge which we can leverage for the QFS task. We investigate

ways to augment such a pre-trained single document abstractive model with ex-

plicit modeling of query relevance, the ability to handle multiple input documents

and to adjust the length of the produced summary accordingly.
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Query:
Where are birth rates declining ? 
What are the reasons for declining birth rates ? 
What are the effects of a declining birth rate ?

Unmodified seq2seq model:
The factory is a decade away , but there are a few 
showcase examples including Fanuc , the machine 
tool manufacturer 's factory near Mount Fuji , 
where robots make robots .But focused on 
maximising the use of people , money , time and 
materials , and humans had to find a way to fit in 
with the complex machinery beginning to surround 
them .The rise in the labour force is expected to be 
0.8 per cent a year until 1993 .

Modified seq2seq model with word count:
labour shortage , brought about by a declining 
birth rate and a more affluent ad highly educated 
society . Makes robots an important component of 
factory automation .  Do-or-die escalating skilled 
labour shortage , brought about by declining birth 
rate and a more affluent and highly educated 
society . 

Figure 7.1: Comparison of the output of the unmodified seq2seq model of See et
al. vs. our model RSA-QFS on a QFS data sample. The unmodified summary
lacks coherence and is not relevant to the input query.

We validate this hypothesis within the framework of a sequence to sequence

(seq2seq) architecture with attention mechanism which has been adopted by most

abstractive approaches. We systematically explore the stage at which query rele-

vance is most beneficial to the QFS abstractive process. Further, we experiment

with a method to build a summary through an iterative process of extraction / ab-

straction pairs: batches of relevant content from multiple documents are identified,

then abstracted into a sequence of coherent segments of text.

We compare our system both with top extractive methods and with various

combinations of a pre-trained abstractive model with relevance matching and mul-

tiple document input. We evaluate the proposed model, called Relevance Sensitive

Abstractive QFS (RSA-QFS), on the traditional DUC datasets. Our experiments

demonstrate the potential of abstractive QFS models with solid ROUGE gains

over those baselines.
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7.2 Previous Work

7.2.1 Extractive Methods

Current state-of-the-art methods on the task of QFS on the DUC dataset could be

categorized into unsupervised methods and small scale supervised methods:

Unsupervised methods search for a set sentences that optimizes a gain func-

tion. The Cross Entropy Summarizer (CES) [115] optimizes relevance under

length constraint. This method achieves current state-of-the-art ROUGE scores

on DUC 2005-7 datasets.

Small scale supervised methods use small datasets (usually previous DUC

datasets) to learn a representation of the dataset, and using this representation,

optimize a gain function. A recent example of this approach is DocRebuild [118],

which trains a neural network to find a set of sentences that minimize that origi-

nal document reconstruction error. The method uses DUC 2006-7 to learn word

representations, and obtains results slightly lower than CES.

All of the extractive methods suffer from the coherence problems mentioned

above.

7.2.2 Sequence-to-Sequence Models for Abstractive Summa-

rization

Abstractive methods in generation have emerged as practical tools since 2015.

At this point, the most successful attempts at abstractive summarization are on

the task of generic single document summarization [3, 55, 119, 62] and are based
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on the sequence-to-sequence (seq2seq) approach with attention mechanism [120].

These models include the following components:

Encoder: a neural network transforms a list of words into a list of dense vector

representations. These dense representations aim to capture both the word and

its context. Encoders are most commonly implemented using a word embedding

layer followed by a Recurrent Neural Network (RNN), i.e., a Long Short Term

Memory (LSTM) component [47] or Gated Recurrent Units (GRU) [46]).

Decoder: a neural network generates the next word in the summary conditioned

on the representation of the prefix of the generated text and a dense context vector

representing the input sequence. The decoder is commonly implemented by an

RNN, a fully connected layer with the dimension of the output matching the size

of the vocabulary, and a softmax layer that turns a vector into a distribution over

the vocabulary.

Attention mechanism: a neural network determines the importance of each

encoded word at each decoding step, and maps the variable length list of en-

coded words representations into a fixed-size context representation. The attention

mechanism is commonly implemented using multiple levels of fully connected

layers to calculate the unnormalized attention weight of each word in the input

and a softmax layer to normalize these weights.

The training of such models for abstractive single document summarization has

been made possible by the availability of large scale datasets such as GIGAWORD

[121], the New-York Times dataset [122] and CNN/Daily News [123], which con-



CHAPTER 7. ABSTRACTIVE QFS 103

tain pairs of source text / short text examples. For example, the CNN/Daily Mail

Corpus was automatically curated by matching articles to the summary created by

the site editor. The dataset includes 90K documents from CNN and 196K docu-

ments from the Daily Mail. The average size of an abstract in the corpus is ⇠100

words, and the size of input documents is about 1,000 words. In contrast, the

average abstract length in the DUC QFS dataset is ⇠250 words.

No such large scale dataset is currently available for the QFS task under the

DUC settings. We hypothesize that models trained on such datasets capture the

linguistic capability to combine small windows of coherent sentences into concise

paraphrases. Accordingly, our objective is to adapt such a pre-trained, generic

abstractive summarization architecture to the more complex task of QFS.

Recent work in abstractive QFS summarization [124] attempt to solve the issue

of missing training data by introducing a new dataset for abstractive QFS based

on Debatepedia. The dataset introduced is, however, very different from the DUC

QFS datasets since the summaries presented are debate key points that are not

more than a single short sentence with on average 10 words per summary vs. 250

words in the DUC data; the input texts are also short snippets of text with an

average of 60 words vs. DUC that can reach more than 1,000 words. Because

of the distinct size differences between the DUC and Debatepedia datasets, we

cannot compare the methods directly.

In this work, we focus on adapting a specific architecture: the pointer-generator

with coverage mechanism network of [119], to the QFS task. This model achieves

state-of-the-art ROUGE [25] and readability scores on the single document generic

abstractive summarization task. Although the pointer-generator with coverage

mechanism network includes significant modifications (pointer-network and cov-
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erage mechanisms), it still adheres to the general encoder-decoder-attention archi-

tecture. We thus present our proposed modification in the simplified context of the

generic architecture, as the handling of relevance is orthogonal to the processing

of rare words using switch-generator and the coverage mechanism ability to avoid

redundancy. Our experiments are using the full network.

7.3 Query Relevance

We adopt the approach to QFS formulated in [5]: the QFS task is split into two

stages, a relevance model determines the extent to which passages in the source

documents are relevant to the input query; and a generic summarization method

is applied to combine the relevant passages into a coherent summary. The rel-

evance model identifies redundant, un-ordered passages using Information Re-

trieval methods; whereas the summarization model selects the most salient con-

tent, removes redundancy and organizes the target summary. This schematic ap-

proach is illustrated in Figure 7.2). This method achieves good ROUGE results

when using simple extractive summarization methods such as KL-sum [1] when

the relevance model is of high quality.

Accordingly, in order to adapt abstractive methods to QFS, the first baseline

we consider consists of filtering the input documents according to relevance and

then pass the filtered relevant passages to an abstractive model. We hypothesize

that this approach will not adapt well for abstractive methods because the input

that is generated by the filtering process is quite different from the type of doc-

uments on which the abstractive model was trained: it is not a well structured

coherent document. Abstractive models rely critically on the sequential structure
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Figure 7.2: Two stage query focused summarization scheme.

of the input to take decision at generation time. Our method aims at preserving

the document structure while infusing relevance into the abstractive model during

decoding.

In this chapter, we consider very simple relevance models and do not attempt

to optimize them – we compare relevance measures based on unigram overlap

between query and sentences, and TF-IDF and word2vec encodings with cosine

distance between the query and sentences. To get an upper bound on the impact

a good relevance model can have, we also consider an Oracle relevance model,

where we compare sentences with the gold summaries using the word count cosine

measure. Our focus is to assess whether the mechanism we propose in order to

combine relevance and abstractive capabilities is capable of producing fluent and

relevant summaries given a good relevance model.

7.4 Methods

7.4.1 Incorporating Relevance in Seq2Seq with Attention Mod-

els

As discussed above, the lack of a large scale dataset similar to QFS task presented

in DUC 2005-7 prevents us from attempting an end-to-end solution that learns to
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generate a relevant summary using a the documents and the query as input. In

order to overcome this obstacle, we split the problem in two tasks - a relevance

model and an abstractive model that takes relevance into account. Relevance can

be introduced into an existing seq2seq with attention model in different ways:

(a) Filter the input to include only sentences with high relevance score and

pass the filtered input to the model at generation time; we test this method as a

baseline. (b) Inject the relevance score into the pre-trained model.

Given a document and a query, we calculate the relevance of each sentence to

the query (as a pre-processing step) and use this relevance as an additional input

to the network. The relevance model predicts the relevance of a sentence given the

query. We project the relevance score of sentences to all the words in the sentence

to obtain a word-level relevance score.

At each decoding step in the abstractive seq2seq model, we multiply each

(unnormalized) attention score of each word calculated by the model by the pre-

computed relevance score, as illustrated in Fig. 7.3. In the unmodified seq2seq

model we adapted [119], the (unnormalized) attention of word i at step t is calcu-

lated by:

e
t
i = v

T tanh(Whhi +WsSt + battn)

where v,Wh,Ws and battn are trained parameters, hi is the encoder output for

word i, and St is the decoder state at step t � 1. The attention scores are later

normalized using a softmax function. In our model, we multiply each word by its
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relevance score before normalization:

ê
t
i = Reli ⇥ e

t
i

where Reli is the relevance score of wi which combines sentence relevance and

lexical relevance, as predicted using the relevance ranking model (all words in the

same sentence are given the same relevance score). We discuss below the range of

relevance models with which we experimented and how the relevance scores are

calibrated in the model.

In this scheme, the adapted model is able to ignore irrelevant sentences at

generation time, while still benefiting from their context information at encoding

time. This is in contrast to the Filtering baseline, where the encoder is not fed

low-relevance sentences at all. We hypothesize that in our proposed scheme, the

encoder will produce a better representation of the input documents than in the

Filtered baseline because it is used in the same regime in which it was trained.

It is important to note that we do not re-train any of the model, the original pa-

rameters of the baseline encoder-decoder-attention model are re-used unchanged.

7.4.2 Calibrating the Relevance Score

Unlike other normalization methods, the softmax function is very sensitive to the

scale of the input values: when the scale of the input is lower, the variance of the

softmax output is similarly low (see Figure 7.4). When the variance of the soft-

max output is low, there is no single word that receives most of the normalized

attention, and the model is unable to “focus” on a single word. Since most atten-

tion models use softmax to normalize the attention weights it is important to keep
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Figure 7.3: Illustration of the RSA-QFS architecture: RelV ector is a vector of
the same length as the input (n) where the ith element is the relevance score of the
ith input word. RelV ector is calculated in advance and is part of the input.

their scale when multiplying them by the relevance scores to keep well calibrated

attention scores.

To address this issue, we multiplied the cosine similarity scores (from the TF-

IDF and word2vec based methods) by 10 in order to increase the scale from 0–1

to 0–10 before applying softmax normalization. This scale modification had a

significant impact on the reported ROUGE performance.

7.4.3 Adapting Abstractive Models to Multi-Document Sum-

marization with Long Output

Summarization datasets such as the Daily-Mail/CNN include single-document in-

put and short summary (about 100 words where DUC requires 250 words). We

need to adapt the pre-trained abstractive model to handle the multi-document sce-
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Figure 7.4: A demonstration of the scale sensitivity of the softmax function. Both
figures illustrate a softmax operation over 1,000 samples from a uniform distribu-
tion; left is sampled from the range 0–1 and the right from 0–100.

nario and produce longer output.

One possible solution is to use an extractive summarization method to gen-

erate the input and apply an abstractive method over it. While this method may

handle multiple documents as input, it suffers from two problems: it can only

decrease recall since it is unlikely that the abstractive method can introduce rele-

vant information not included in the input and it will suffer from the abstractive

model bias for short output – we cannot directly encourage the abstractive model

to generate longer text to cover more content.

Instead, we use the following simple eager algorithm to produce summaries

from multiple documents and control the length of the output. We first sort the

input documents by overall TF-IDF cosine similarity to the query, then iteratively

summarize the documents till the budget of 250 words is achieved. To avoid

redundancy, we filter out generated sentences from the generated summary when

more than half of their words are already included in the current summary.

This algorithm ignores document structure and topic progression and uses a

simplistic model of redundancy. We leave for future work the comparison of this
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Algorithm 1 Iterative Version
documents ( sort by relevance(documents)
output summary ( new summary()
for document 2 documents do

summary ( RSA word count(document)
for sentence 2 summary do

if len(output summary + sent) > budget then
return output summary

if is novel(output summary, sentence) then
output summary+ = sentence

baseline algorithm with more sophisticated models of content redundancy and

discourse.

7.5 Experiments

The goals of the experiments are: (a) to compare RSA-QFS with the baseline

where the input documents are filtered according to relevance; (b) to test whether

the method to incorporate relevance within the attention mechanism on a single

document input produces readable and relevant output; (c) to measure the impact

of the quality of different relevance models on the output of RSA-QFS on a sin-

gle document input; and (d) to evaluate the iterative version of RSA-QFS vs. a

state-of-the-art extractive QFS method (CES).

7.5.1 Evaluation

We tested the various scenarios using the QFS track data from the DUC 2005,

2006 and 2007 datasets [12, 20]. We also compared RSA-QFS on the Debatepedia

dataset despite the differences in sizes discussed above. We use ROUGE metrics

for all performance comparisons.
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We evaluate separately the incorporation of the relevance model with a pre-

trained abstractive model on a single document as an ablation study, and we test

the iterative algorithm to handle multiple input documents in a second round of

experiments.

In the first round of experiments, we compare various abstractive baselines on

the longest input document from the QFS topic set (we also experimented with

the most relevant document but obtained lower ROUGE performance). For such

comparisons, we use ROUGE-1, ROUGE-2 and ROUGE-L metrics (ROUGE-L

measures recall on the longest common substrings). When comparing RSA-QFS

to the extractive method, we use ROUGE-1, ROUGE-2 and ROUGE-SU4 which

are most usually reported for extractive method performance.

The ROUGE values obtained in the single-document ablation study are ex-

pected to be much lower than competitive QFS results for two main reasons: (1)

we use as reference the DUC reference summaries with no modifications. These

reference summaries were created manually to cover the full topic set; in con-

trast, in the ablation study we read only a single document, and the best summary

we can generate will lack coverage; (2) the pointer-generator abstractive model

was trained to generate a ⇠100 words summary, while DUC datasets summaries

contain ⇠250 words. Still the reported ROUGE performance indicates trends to

detect whether the generated short summaries manage to capture relevance.

7.5.2 Abstractive Baselines

We compare RSA-QFS with the following baselines:
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BlackBox: We run the document through the pointer-generator abstractive model

without any modifications. This weak baseline indicates whether our method im-

prove QFS performance vs. an abstractive method that completely ignores the

query.

Filtered: We filtered half of the document sentences by selecting the ones with

the highest relevance score. We maintained the original ordering of the sentences.

We then used the filtered document as an input to the pointer-generator abstractive

model. The relevance score we used was the count of shared words betwen the

query and the sentence (see below the list of other relevance models we tested -

this model of relevance provided the best results on the filtered baseline).

Relevance Sensitive Attention (RSA-QFS): This method is the main contribu-

tion of this work.

We tested the method using the following relevance score functions:

Word Count is a simple count of word overlap between the query and a given

sentence.

RSA-TF-IDF: We generated a TF-IDF representation of the entire document

set for each topic and aggregated the sentence scores using cosine similarity be-

tween the query and the sentence TF-IDF vectors (RSA TF-IDF).

RSA word2vec: We use a word2vec model [125], pre-trained on the Google

News dataset. Relevance is measured as the cosine similarity between the summed
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representation vector of each word in the query and in the sentence. Words that

did not appear in the pre-trained word2vec model vocabulary were ignored.

Results are given in Table 7.1. As expected, the “Blackbox” method which

ignores the query completely performs poorly. More surprisingly, we observe that

the Filtered model (where we filter the input document according to the word-

count relevance model and then apply the abstractive model) does not behave any

better than the blackbox unmodified model. In contrast, RSA-QFS improve signif-

icantly (all improvements are significant within 5% except DUC-2005 ROUGE-2)

over the Filtered pipeline - while processing exactly the same input material as the

Filtered method. This indicates that the way we incorporate relevance within the

Attention mechanism is more effective than directly adjusting the input represen-

tation.

The word count relevance model achieves the highest ROUGE scores when

compared with other relevance models. On all the datasets, it outperforms the

filtered baseline by a large amount. The word2vec-based method is close and

consistently within confidence interval of the word count method. We speculate

that the fact that out of vocabulary words are ignored, and the fact that DUC

queries tend to be verbose and do not need much expansion explain the fact that

word2vec does not improve on the Word count model. The TF-IDF-based method

performed poorly. We presume this is due to the fact that the ROUGE settings1

did not eliminate stop words and frequent words for the evaluation.
1PyRouge default settings as used in the pointer-generator evaluation [119]
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DUC2005 DUC2006 DUC2007
Single Document 1 2 L 1 2 L 1 2 L

BlackBox 12.11 1.38 11.28 14.76 2.29 13.35 15.33 2.68 14.04
Filtered 12.09 1.33 11.20 14.71 2.25 13.48 16.23 2.89 14.76
RSA Word Count 12.65 1.61 11.79 16.34 2.56 14.69 17.80 3.45 16.38
RSA TF-IDF 11.84 1.57 11.00 13.93 2.12 12.90 14.71 2.61 13.50
RSA word2vec 12.44 1.39 11.52 15.80 2.43 14.46 17.55 3.21 15.90

Table 7.1: Incorporating Relevance on a Single (Longest) Document Input

DUC2005 DUC2006 DUC2007
Multi-Document 1 2 SU4 1 2 SU4 1 2 SU4

CES 40.33 7.94 13.89 43.00 9.69 15.63 45.43 12.02 17.50
Filtered Iterative 33.95 5.76 10.95 37.34 7.57 12.63 39.23 8.551 13.83
Iterative RSA Word Count 39.82 6.98 15.73 42.89 8.73 17.75 43.92 10.13 18.54
Iterative RSA Oracle 43.48 8.75 17.94 46.64 10.96 20.34 47.91 12.77 21.37

Table 7.2: Iterative RSA-QFS vs. Extractive Methods

7.5.3 Extractive Baselines

In this part of the experiments, we compare the RSA-QFS method extended with

the iterative algorithm to consume multiple documents and a query under the exact

DUC conditions and produce summaries comparable to existing extractive meth-

ods. We compare with CES, the current state of the art extractive algorithm on

QFS. Results are in Table 7.2.

We compare two relevance models with RSA-QFS: the word-count model

which we identified as the best performing one in the ablation study, and the Or-

acle model. In the Oracle model, we compute the relevance of an input sentence

by comparing it to the reference models instead of with the query. This gives us

a theoretical upper bound on the potential benefit of more sophisticated retrieval

ranking methods. We also compared the RSA-QFS method with iteratively apply-

ing the base abstractive summarization on the documents filtered be relevancy to

the query.
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Debatepedia
Recall-ROUGE 1 2 L

SD2 41.26 18.75 40.43
RSA Word Count 53.09 16.10 46.18

Table 7.3: Results for Debatepedia QFS dataset

We observe that RSA-QFS is competitive with state-of-the-art extractive meth-

ods and outperforms them in the SU4 metric. The oracle baseline shows that a

more sophisticated relevance method has the potential to improve performance by

a significant amount and way above the current extractive top model.

7.5.4 Evaluation Using the Debatepedia Dataset

We used the Debatepedia QFS dataset [124] to evaluate our method vs. the LSTM

based diversity attention trained end to end on the Debatepedia dataset (SD2)

model. We compare with the ROUGE recall results provided in the original paper.

While the result in Table 7.3 may suggest our method outperforms the model that

is trained on the actual dataset, it must be noted that our model yielded summaries

ten times longer than required and achieved very low ROUGE precision. We did

not compare precision score since it was not provided in the original research.

This comparison indicates the datasets are not directly comparable, but that even

on a completely different domain, the abstractive capability encapsulated in the

model provides readable and realistic summaries.
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7.6 Analysis

7.6.1 Output Abstractiveness

In order to test if our model is truly abstractive, instead of simply copying rel-

evant fragments verbatim from the input documents, we counted the amount of

sentences from the summary generated by our model (using word count similarity

function) which are substrings of the original text. We found that on average only

about 33% of the sentences were copied from the original document and that the

average word edit-distance between each generated sentence and the most similar

sentence is about 39 edits (tested on DUC 2007 summarized by the iterative RSA

word count method).

We observed that the generated sentences, while significantly different from

the source sentences do not introduce many new content words. Almost all gen-

erated words are present in the source documents. While these two measures

indicate a good level of “abstractiveness”, it remains a challenge to measure ab-

stractiveness in an interpretable and quantitative manner. Cursory reading of the

generated summaries still “feels” very literal.

We assessed readability by reading the summaries generated by the best per-

forming methods, the RSA Word Count (an example can be seen in Fig. 7.1) and

the Oracle Based Iterative Method. We found that the summaries produced by

the single document variant maintained the readability of the unmodified model.

We did notice that the coverage mechanism was affected due to our modification

and some sentences were repeated in the summaries our model produced (com-

pared to the original abstractive model). The iterative version did not suffer from

repeated sentences, since they are dismissed by the algorithm, but did suffer from
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lack of coherence between sentences, indicating a better discourse model is re-

quired than the simple eager iterative model we used. Improved coherence also

requires better evaluation metrics than the ROUGE metrics we have used.

All the produced summaries for all the methods and the code required to pro-

duce them are available at https://github.com/talbaumel/RSAsummarization.

7.7 Conclusion

In this work, we present RSA-QFS, a novel method for incorporating relevance

into a neural seq2seq models with attention mechanism for abstractive summa-

rization to the QFS task, without additional training. RSA-QFS significantly

improves ROUGE scores for the QFS task when compared to both unmodified

models and a two steps filtered QFS scheme, while preserving readability of the

output summary. The method can be used with various relevance score functions.

We compared the method with state-of-the-art extractive methods and showed

it produces competitive ROUGE scores for the QFS task even with very simple

relevance models and a simple iterative model to account for multiple input doc-

uments. When using an ideal Oracle relevance model, our method achieves very

high ROUGE results compared to extractive methods.

This study frames future work on multi-document abstractive summarization:

we need to design quantitative measures of abstractiveness (how much re-formulation

is involved in producing a summary given the input documents) and of summary

coherence to overcome the known limitations of ROUGE evaluation when applied

to non-extractive methods. We also find that relevance models remain a key as-

pect of summarization and the gap between Oracle and practical relevance models
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indicates there is potential for much improvement on these models.



Chapter 8

Conclusion

In this thesis we discussed the field of automatic summarization and state-of-the-

art neural-based attempts at confronting various tasks in this field. In the first

part of the thesis we over-viewed the field of automatic summarization: presented

the many tasks associated with the field, presented the most common datasets

on the field, and the various ways to evaluate automatic summaries; finally we

presented an in-depth analysis of issues in query-focused-summarization datasets

and suggested ways to amend them.

In the second part of the thesis we provided an overview of common neural-

methods for natural-language-processing. In this part we covered how words

can be represented (word embeddings), how sentences can be represented (using

RNNs), and various specialized deep architectures for automatic summarization

(seq2seq, attention, copy-mechanism, etc). This technical overview is required to

better understand the final part of the thesis.

In the final part of the thesis we presented three contribution to the field: a

way to evaluate different word embeddings based on resources available from the

119
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pyramid-method for summarization evaluation, a proxy task for evaluating the

ability of different text encoders to surface semantic information from input text

and presented a state-of-the-art method for multi-label classification of medical

records, finally we presented the first attempt of achieving abstractive query fo-

cused summarization.
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[61] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Ben-

gio. On using very large target vocabulary for neural machine translation.

CoRR, abs/1412.2007, 2014.

[62] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced

model for abstractive summarization. CoRR, abs/1705.04304, 2017.



BIBLIOGRAPHY 130

[63] Arun Venkatraman, Martial Hebert, and J Andrew Bagnell. Improving

multi-step prediction of learned time series models. In AAAI, pages 3024–

3030, 2015.

[64] Ronald J Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning, 8(3-4):229–256,

1992.

[65] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris

Callison-Burch. Optimizing statistical machine translation for text sim-

plification. Transactions of the Association for Computational Linguistics,

4:401–415, 2016.

[66] Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Polyglot: Distributed

word representations for multilingual nlp. arXiv preprint arXiv:1307.1662,

2013.

[67] Alexandre Passos, Vineet Kumar, and Andrew McCallum. Lexicon in-

fused phrase embeddings for named entity resolution. arXiv preprint

arXiv:1404.5367, 2014.

[68] Mohit Bansal, Kevin Gimpel, and Karen Livescu. Tailoring continuous

word representations for dependency parsing. In ACL (2), pages 809–815,

2014.

[69] Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev.

Semantic frame identification with distributed word representations. In

ACL (1), pages 1448–1458, 2014.



BIBLIOGRAPHY 131

[70] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and

Christopher D Manning. Semi-supervised recursive autoencoders for pre-

dicting sentiment distributions. In Proceedings of the conference on empir-

ical methods in natural language processing, pages 151–161. Association

for Computational Linguistics, 2011.

[71] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for gen-

erating image descriptions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3128–3137, 2015.

[72] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-

zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-

training help deep learning? Journal of Machine Learning Research,

11(Feb):625–660, 2010.

[73] William B Dolan and Chris Brockett. Automatically constructing a corpus

of sentential paraphrases. In Proc. of IWP, 2005.

[74] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D

Manning. A large annotated corpus for learning natural language inference.

arXiv preprint arXiv:1508.05326, 2015.

[75] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities

in continuous space word representations. In hlt-Naacl, volume 13, pages

746–751, 2013.

[76] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov

et al.’s negative-sampling word-embedding method. arXiv preprint

arXiv:1402.3722, 2014.



BIBLIOGRAPHY 132

[77] Gabriel Stanovsky, Ido Dagan, et al. Open ie as an intermediate struc-

ture for semantic tasks. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 2: Short Papers),

volume 2, pages 303–308, 2015.

[78] Nick Craswell. Mean reciprocal rank. In Encyclopedia of Database Sys-

tems, pages 1703–1703. Springer, 2009.

[79] Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Gold-

berg. Fine-grained analysis of sentence embeddings using auxiliary predic-

tion tasks. arXiv preprint arXiv:1608.04207, 2016.

[80] Koby Crammer, Mark Dredze, Kuzman Ganchev, Partha Pratim Talukdar,

and Steven Carroll. Automatic code assignment to medical text. In Pro-

ceedings of the ACL Workshop on BioNLP 2007: Biological, Translational,

and Clinical Language Processing, pages 129–136, 2007.
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 הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט

 

 

 ה בזאת: (אנא סמן):/מצהיר אני החתום מטה

 

 מנחה/ים.___  חיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאת 

 

 .מתקופת היותי תלמיד/ת מחקר___  החומר המדעי הנכלל בעבודה זו הינו פרי מחקרי 

 

 ___  בעבודה נכלל חומר מחקרי שהוא פרי שיתוף עם אחרים, למעט עזרה טכנית

הנהוגה בעבודה ניסיונית. לפי כך מצורפת בזאת הצהרה על תרומתי ותרומת שותפי   

 למחקר, שאושרה על ידם ומוגשת בהסכמתם.

 

 

 

 תאריך ________   שם התלמיד/ה _______________  חתימה ___________
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